Repository logo
 
Publication

Predicting Sleep Quality Based on Metabolic, Body Composition, and Physical Fitness Variables in Aged People: Exploratory Analysis with a Conventional Machine Learning Model

datacite.subject.fosCiências Médicas::Ciências da Saúde
datacite.subject.sdg03:Saúde de Qualidade
datacite.subject.sdg04:Educação de Qualidade
datacite.subject.sdg10:Reduzir as Desigualdades
dc.contributor.authorForte, Pedro
dc.contributor.authorEncarnação, Samuel
dc.contributor.authorTeixeira, José Eduardo
dc.contributor.authorBranquinho, Luís
dc.contributor.authorBarbosa, Tiago M.
dc.contributor.authorMonteiro, António M.
dc.contributor.authorPecos-Martín, Daniel
dc.date.accessioned2025-10-22T13:36:47Z
dc.date.available2025-10-22T13:36:47Z
dc.date.issued2025
dc.description.abstractSleep plays a crucial role in the health of older adults, and its quality is influenced by multiple physiological and functional factors. However, the relationship between sleep quality and physical fitness, body composition, and metabolic markers remains unclear. This exploratory study aimed to investigate the associations between sleep quality and physical, metabolic, and body composition variables in older adults, and to evaluate the preliminary performance of a logistic regression model in classifying sleep quality. A total of 32 subjects participated in this study, with a mean age of 69. The resting arterial pressure (systolic and diastolic), resting heart rate, anthropometrics (high waist girth), body composition (by bioimpedance), and physical fitness (Functional Fitness Test) and sleep quality (Pitsburg sleep-quality index) were evaluated. Group comparisons, associative analysis and logistic regression with 5-fold stratified cross-validation was used to classify sleep quality based on selected non-sleep-related predictors. Individuals with good sleep quality showed significantly better back stretch (t = 2.592; p = 0.015; eta(2) = 0.239), lower limb strength (5TSTS; t = 2.564; p = 0.016; eta(2) = 0.476), and longer total sleep time (t = 6.882; p < 0.001; eta(2) = 0.675). Exploratory correlations showed that poor sleep quality was moderately associated with reduced lower-limb strength and mobility. The logistic regression model including 5TSTS and TUG achieved a mean accuracy of 0.76 +/- 0.15, precision of 0.79 +/- 0.18, recall of 0.83 +/- 0.21, and AUC of 0.74 +/- 0.16 across cross-validation folds. These preliminary findings suggest that physical fitness and clinical variables significantly influence sleep quality in older adults. Sleep-quality-dependent patterns suggest that interventions to improve lower limb strength may promote better sleep outcomes.eng
dc.description.sponsorshipThis research received no external funding.
dc.identifier.citationForte, Pedro; Encarnação, Samuel; Teixeira, José Eduardo; Branquinho, Luís; Barbosa, Tiago M.; Monteiro, António M.; Pecos-Martín, Daniel (2025). Predicting Sleep Quality Based on Metabolic, Body Composition, and Physical Fitness Variables in Aged People: Exploratory Analysis with a Conventional Machine Learning Model. Journal of Functional Morphology and Kinesiology. ISSN 2411-5142. 10:3, p. 1-13
dc.identifier.doi10.3390/jfmk10030337
dc.identifier.issn2411-5142
dc.identifier.urihttp://hdl.handle.net/10198/34862
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relation.ispartofJournal of Functional Morphology and Kinesiology
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectAge
dc.subjectSleep quality
dc.subjectPhysical fitness
dc.subjectBody composition
dc.titlePredicting Sleep Quality Based on Metabolic, Body Composition, and Physical Fitness Variables in Aged People: Exploratory Analysis with a Conventional Machine Learning Modeleng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage13
oaire.citation.issue3
oaire.citation.startPage1
oaire.citation.titleJournal of Functional Morphology and Kinesiology
oaire.citation.volume10
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameForte
person.familyNameEncarnação
person.familyNameTeixeira
person.familyNameBarbosa
person.familyNameMonteiro
person.givenNamePedro
person.givenNameSamuel
person.givenNameJosé Eduardo
person.givenNameTiago M.
person.givenNameAntónio M.
person.identifier.ciencia-id351B-B16B-79C7
person.identifier.ciencia-id9416-E2F5-E660
person.identifier.ciencia-idD11C-9591-7A8A
person.identifier.ciencia-id8B11-BDC4-F6FF
person.identifier.ciencia-idC41C-6CCD-A1F0
person.identifier.orcid0000-0003-0184-6780
person.identifier.orcid0000-0003-2965-2777
person.identifier.orcid0000-0003-4612-3623
person.identifier.orcid0000-0001-7071-2116
person.identifier.orcid0000-0003-4467-1722
person.identifier.scopus-author-id10044856400
relation.isAuthorOfPublication3ecc6d1b-07a4-40d7-81f4-df6fd7b3d5b0
relation.isAuthorOfPublicationd38d4c9f-84d5-4562-9482-5322ded17d3d
relation.isAuthorOfPublication79042f92-ce53-4b79-a33f-76ac63c55b8d
relation.isAuthorOfPublication941a6f14-cfba-458a-a2e3-0cbd1846cd42
relation.isAuthorOfPublication5b5d8601-e683-42d5-a1b5-c8e29a4e0a41
relation.isAuthorOfPublication.latestForDiscovery3ecc6d1b-07a4-40d7-81f4-df6fd7b3d5b0

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Predicting sleep quality.pdf
Size:
324.56 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: