Repository logo
 
Publication

Editorial for Special Issue: tourism forecasting: time-series analysis of world and regional data

dc.contributor.authorTeixeira, João Paulo
dc.contributor.authorGunter, Ulrich
dc.date.accessioned2023-03-21T14:35:43Z
dc.date.available2023-03-21T14:35:43Z
dc.date.issued2023
dc.description.abstractThis Special Issue was honored with six contribution papers embracing the subject of tourism forecasting. The papers focused on forecasting tourism demand in the USA, Vienna—Austria, Vietnam, Marrakech-Safi region of Morocco, Dubai, and China. The time series were spread from tourism interest in the USA, hotel room demand in Vienna, number of tourists in Vietnam, annual tourist arrivals to the Marrakech-Safi region of Morocco, tourist arrivals to Dubai from the UK and the daily and weekly number of passengers at urban rail transit stations in China. The used datasets, in some cases, included thepandemic period, which was a severe challenge for the forecasting models. The forecasting models used embrace the following parameters: descriptive analysis techniques, seasonal naïve, Error Trend Seasonal (ETS), Seasonal Autoregressive Integrated Moving Average (SARIMA), Trigonometric Seasonality, Box–Cox Transformation, ARMA Errors, Trend and Seasonal Components (TBATS), Seasonal Neural Network Autoregression (Seasonal NNAR), Seasonal NNAR with an external regressor, Artificial Neural Network (ANN) forecasting model, ARIMA, AR, linear regression, Support Vector Regression (SVR), eXtreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM) models, ensemble models, Box–Jenkins time series models, and the Facebook Prophet algorithm.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationTeixeira, João Paulo; Gunter, Ulrich (2023). Tourism forecasting: time-series analysis of world and regional data. Forecasting. 5:1, p. 210 - 212pt_PT
dc.identifier.doi10.3390/forecast5010011pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/27907
dc.language.isoengpt_PT
dc.publisherForecastingpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectTourism forecastingpt_PT
dc.subjectCOVID-19pt_PT
dc.subjectThepandemic periodpt_PT
dc.titleEditorial for Special Issue: tourism forecasting: time-series analysis of world and regional datapt_PT
dc.typeother
dspace.entity.typePublication
oaire.citation.endPage212pt_PT
oaire.citation.issue1pt_PT
oaire.citation.startPage210pt_PT
oaire.citation.titleForecastingpt_PT
oaire.citation.volume5pt_PT
person.familyNameTeixeira
person.givenNameJoão Paulo
person.identifier663194
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57069567500
rcaap.rightsopenAccesspt_PT
rcaap.typeotherpt_PT
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery33f4af65-7ddf-46f0-8b44-a7470a8ba2bf

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Publicado_forecasting-05-00011.pdf
Size:
202.31 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: