| Nome: | Descrição: | Tamanho: | Formato: | |
|---|---|---|---|---|
| 3.27 MB | Adobe PDF |
Autores
Orientador(es)
Resumo(s)
Besides being an important communication tool, the voice can also serve for identification purposes since it has an individual signature for each person. Speaker recognition technologies can use this signature as an authentication method to access environments. This work explores the development and testing of machine and deep learning models, specifically the GMM, the VGG-M, and ResNet50 models, for speaker recognition access control to build a system to grant access to CeDRI’s laboratory. The deep learning models were evaluated based on their performance in recognizing speakers from audio samples, emphasizing the Equal Error Rate metric to determine their effectiveness. The models were trained and tested initially in public datasets with 1251 to 6112 speakers and then fine-tuned on private datasets with 32 speakers of CeDri’s laboratory. In this study, we compared the performance of ResNet50, VGGM, and GMM models for speaker verification. After conducting experiments on our private datasets, we found that the ResNet50 model outperformed the other models. It achieved the lowest Equal Error Rate (EER) of 0.7% on the Framed Silence Removed dataset. On the same dataset,« the VGGM model achieved an EER of 5%, and the GMM model achieved an EER of 2.13%. Our best model’s performance was unable to achieve the current state-of-the-art of 2.87% in the VoxCeleb 1 verification dataset. However, our best implementation using ResNet50 achieved an EER of 5.96% while being trained on only a tiny portion of the data than it usually is. So, this result indicates that our model is robust and efficient and provides a significant improvement margin. This thesis provides insights into the capabilities of these models in a real-world application, aiming to deploy the system on a platform for practical use in laboratory access authorization. The results of this study contribute to the field of biometric security by
demonstrating the potential of speaker recognition systems in controlled environments.
Além de ser uma importante ferramenta de comunicação, a voz também pode servir para fins de identificação, pois possui uma assinatura individual para cada pessoa. As tecnologias de reconhecimento de voz podem usar essa assinatura como um método de autenticação para acessar ambientes. Este trabalho explora o desenvolvimento e teste de modelos de aprendizado de máquina e aprendizado profundo, especificamente os modelos GMM, VGG-M e ResNet50, para controle de acesso de reconhecimento de voz com o objetivo de construir um sistema para conceder acesso ao laboratório do CeDRI. Os modelos de aprendizado profundo foram avaliados com base em seu desempenho no reconhecimento de falantes a partir de amostras de áudio, enfatizando a métrica de Taxa de Erro Igual para determinar sua eficácia. Osmodelos foram inicialmente treinados e testados em conjuntos de dados públicos com 1251 a 6112 falantes e, em seguida, ajustados em conjuntos de dados privados com 32 falantes do laboratório do CeDri. Neste estudo, comparamos o desempenho dos modelos ResNet50, VGGM e GMM para verificação de falantes. Após realizar experimentos em nossos conjuntos de dados privados, descobrimos que o modelo ResNet50 superou os outros modelos. Ele alcançou a menor Taxa de Erro Igual (EER) de 0,7% no conjunto de dados Framed Silence Removed. No mesmo conjunto de dados, o modelo VGGM alcançou uma EER de 5% e o modelo GMM alcançou uma EER de 2,13%. O desempenho do nosso melhor modelo não conseguiu atingir o estado da arte atual de 2,87% no conjunto de dados de verificação VoxCeleb 1. No entanto, nossa melhor implementação usando o ResNet50 alcançou uma EER de 5,96%, mesmo sendo treinado em apenas uma pequena parte dos dados que normalmente são utilizados. Assim, este resultado indica que nosso modelo é robusto e eficiente e oferece uma margem significativa de melhoria. Esta tese oferece insights sobre as capacidades desses modelos em uma aplicação do mundo real, visando implantar o sistema em uma plataforma para uso prático na autorização de acesso ao laboratório. Os resultados deste estudo contribuem para o campo da segurança biométrica ao demonstrar o potencial dos sistemas de reconhecimento de voz em ambientes controlados.
Além de ser uma importante ferramenta de comunicação, a voz também pode servir para fins de identificação, pois possui uma assinatura individual para cada pessoa. As tecnologias de reconhecimento de voz podem usar essa assinatura como um método de autenticação para acessar ambientes. Este trabalho explora o desenvolvimento e teste de modelos de aprendizado de máquina e aprendizado profundo, especificamente os modelos GMM, VGG-M e ResNet50, para controle de acesso de reconhecimento de voz com o objetivo de construir um sistema para conceder acesso ao laboratório do CeDRI. Os modelos de aprendizado profundo foram avaliados com base em seu desempenho no reconhecimento de falantes a partir de amostras de áudio, enfatizando a métrica de Taxa de Erro Igual para determinar sua eficácia. Osmodelos foram inicialmente treinados e testados em conjuntos de dados públicos com 1251 a 6112 falantes e, em seguida, ajustados em conjuntos de dados privados com 32 falantes do laboratório do CeDri. Neste estudo, comparamos o desempenho dos modelos ResNet50, VGGM e GMM para verificação de falantes. Após realizar experimentos em nossos conjuntos de dados privados, descobrimos que o modelo ResNet50 superou os outros modelos. Ele alcançou a menor Taxa de Erro Igual (EER) de 0,7% no conjunto de dados Framed Silence Removed. No mesmo conjunto de dados, o modelo VGGM alcançou uma EER de 5% e o modelo GMM alcançou uma EER de 2,13%. O desempenho do nosso melhor modelo não conseguiu atingir o estado da arte atual de 2,87% no conjunto de dados de verificação VoxCeleb 1. No entanto, nossa melhor implementação usando o ResNet50 alcançou uma EER de 5,96%, mesmo sendo treinado em apenas uma pequena parte dos dados que normalmente são utilizados. Assim, este resultado indica que nosso modelo é robusto e eficiente e oferece uma margem significativa de melhoria. Esta tese oferece insights sobre as capacidades desses modelos em uma aplicação do mundo real, visando implantar o sistema em uma plataforma para uso prático na autorização de acesso ao laboratório. Os resultados deste estudo contribuem para o campo da segurança biométrica ao demonstrar o potencial dos sistemas de reconhecimento de voz em ambientes controlados.
Descrição
Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do Paraná
Palavras-chave
Besides Communication tool Deep learning model
