Repository logo
 
Publication

Modelling academic dropout in computer engineering using arti cial neural networks

dc.contributor.authorCamelo, Diogo
dc.contributor.authorSantos, João C.C.
dc.contributor.authorMartins, Maria Prudência
dc.contributor.authorGouveia, Paulo D.F.
dc.date.accessioned2023-02-17T09:52:37Z
dc.date.available2023-02-17T09:52:37Z
dc.date.issued2021
dc.description.abstractSchool dropout in higher education is an academic, economic, political and social problem, which has a great impact and is difficult to resolve. In order to mitigate this problem, this paper proposes a predictive model of classification, based on artificial neural networks, which allows the prediction, at the end of the first school year, of the propensity that the computer engineering students of a polytechnic institute in the interior of the country have for dropout. A differentiating aspect of this study is that it considers the classifications obtained in the course units of the first academic year as potential predictors of dropout. A new approach in the process of selecting the factors that foreshadow the dropout allowed isolating 12 explanatory variables, which guaranteed a good predictive capacity of the model (AUC = 78.5%). These variables reveal fundamental aspects for the adoption of management strategies that may be more assertive in the combat to academic dropout.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCamelo, Diogo; Santos, João; Martins, Maria Prudência; Gouveia, Paulo D.F. (2021). Modelling academic dropout in computer engineering using arti cial neural networks. In Rocha, Álvaro [et al.] (eds.) Trends and applications in information systems and technologies. Springer, Cham. 1366. p. 141-150pt_PT
dc.identifier.doi10.1007/978-3-030-72651-5_14pt_PT
dc.identifier.isbn978-3-030-72650-8
dc.identifier.urihttp://hdl.handle.net/10198/27023
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer International Publishingpt_PT
dc.relationElectromechatronic Systems Research Centre
dc.relationElectromechatronic Systems Research Centre
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectEducational data miningpt_PT
dc.subjectArtificial neural networkpt_PT
dc.subjectAcademic dropoutpt_PT
dc.subjectPredictive modelpt_PT
dc.titleModelling academic dropout in computer engineering using arti cial neural networkspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleElectromechatronic Systems Research Centre
oaire.awardTitleElectromechatronic Systems Research Centre
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04131%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04131%2F2020/PT
oaire.citation.endPage150pt_PT
oaire.citation.startPage141pt_PT
oaire.citation.titleTrends and applications in information systems and technologiespt_PT
oaire.citation.volume1366pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMartins
person.familyNameGouveia
person.givenNameMaria Prudência
person.givenNamePaulo D.F.
person.identifier.ciencia-id4C16-9EE4-B35D
person.identifier.orcid0000-0001-9281-7138
person.identifier.orcid0000-0003-3049-6230
person.identifier.scopus-author-id20433578000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication43e52986-3314-423b-a1b3-f634412c58a1
relation.isAuthorOfPublication41c37437-90c4-4e40-893b-44fe4ae1f159
relation.isAuthorOfPublication.latestForDiscovery41c37437-90c4-4e40-893b-44fe4ae1f159
relation.isProjectOfPublicationa2406b55-be4f-4ab4-8e7d-eb8fca362309
relation.isProjectOfPublication2f1bcd02-160b-4546-b88d-594ee9732453
relation.isProjectOfPublication.latestForDiscovery2f1bcd02-160b-4546-b88d-594ee9732453

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
modelling academic.pdf
Size:
411.58 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: