Publication
Modelling academic dropout in computer engineering using arti cial neural networks
dc.contributor.author | Camelo, Diogo | |
dc.contributor.author | Santos, João C.C. | |
dc.contributor.author | Martins, Maria Prudência | |
dc.contributor.author | Gouveia, Paulo D.F. | |
dc.date.accessioned | 2023-02-17T09:52:37Z | |
dc.date.available | 2023-02-17T09:52:37Z | |
dc.date.issued | 2021 | |
dc.description.abstract | School dropout in higher education is an academic, economic, political and social problem, which has a great impact and is difficult to resolve. In order to mitigate this problem, this paper proposes a predictive model of classification, based on artificial neural networks, which allows the prediction, at the end of the first school year, of the propensity that the computer engineering students of a polytechnic institute in the interior of the country have for dropout. A differentiating aspect of this study is that it considers the classifications obtained in the course units of the first academic year as potential predictors of dropout. A new approach in the process of selecting the factors that foreshadow the dropout allowed isolating 12 explanatory variables, which guaranteed a good predictive capacity of the model (AUC = 78.5%). These variables reveal fundamental aspects for the adoption of management strategies that may be more assertive in the combat to academic dropout. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Camelo, Diogo; Santos, João; Martins, Maria Prudência; Gouveia, Paulo D.F. (2021). Modelling academic dropout in computer engineering using arti cial neural networks. In Rocha, Álvaro [et al.] (eds.) Trends and applications in information systems and technologies. Springer, Cham. 1366. p. 141-150 | pt_PT |
dc.identifier.doi | 10.1007/978-3-030-72651-5_14 | pt_PT |
dc.identifier.isbn | 978-3-030-72650-8 | |
dc.identifier.uri | http://hdl.handle.net/10198/27023 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Springer International Publishing | pt_PT |
dc.relation | Electromechatronic Systems Research Centre | |
dc.relation | Electromechatronic Systems Research Centre | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Educational data mining | pt_PT |
dc.subject | Artificial neural network | pt_PT |
dc.subject | Academic dropout | pt_PT |
dc.subject | Predictive model | pt_PT |
dc.title | Modelling academic dropout in computer engineering using arti cial neural networks | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Electromechatronic Systems Research Centre | |
oaire.awardTitle | Electromechatronic Systems Research Centre | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04131%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04131%2F2020/PT | |
oaire.citation.endPage | 150 | pt_PT |
oaire.citation.startPage | 141 | pt_PT |
oaire.citation.title | Trends and applications in information systems and technologies | pt_PT |
oaire.citation.volume | 1366 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Martins | |
person.familyName | Gouveia | |
person.givenName | Maria Prudência | |
person.givenName | Paulo D.F. | |
person.identifier.ciencia-id | 4C16-9EE4-B35D | |
person.identifier.orcid | 0000-0001-9281-7138 | |
person.identifier.orcid | 0000-0003-3049-6230 | |
person.identifier.scopus-author-id | 20433578000 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | restrictedAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 43e52986-3314-423b-a1b3-f634412c58a1 | |
relation.isAuthorOfPublication | 41c37437-90c4-4e40-893b-44fe4ae1f159 | |
relation.isAuthorOfPublication.latestForDiscovery | 41c37437-90c4-4e40-893b-44fe4ae1f159 | |
relation.isProjectOfPublication | a2406b55-be4f-4ab4-8e7d-eb8fca362309 | |
relation.isProjectOfPublication | 2f1bcd02-160b-4546-b88d-594ee9732453 | |
relation.isProjectOfPublication.latestForDiscovery | 2f1bcd02-160b-4546-b88d-594ee9732453 |