Repository logo
 
Publication

Tourism demand modeling and forecasting with artificial neural network models: the Mozambique case study

dc.contributor.authorConstantino, Hortêncio
dc.contributor.authorFernandes, Paula Odete
dc.contributor.authorTeixeira, João Paulo
dc.date.accessioned2018-04-10T10:47:50Z
dc.date.available2018-04-10T10:47:50Z
dc.date.issued2015
dc.description.abstractThis study aimed to model and forecast the tourism demand for Mozambique for the period from January 2004 to December 2013 using Artificial Neural Networks models. The number of overnight stays in Hotels was used as representative of the tourism demand. This variable was used as the output of the model. A set of independent variables was experimented in the input of the model, namely: the Consumer Price Index (CPI), Gross Domestic Product (GDP) and Exchange Rates (ER) of the outbound touristic markets, South Africa (SA), United State of America (USA), Mozambique (MZ), Portugal (PT) and the United Kingdom (UK). A multilayer neural network with different combinations of variables in the input layer, one hidden layer with different number of nodes and one output layer was experimented. Empirical results showed that variables CPI_MT, ER_EURO-MT, ER_DOLAR-MT and ER_ZAR-MT are fundamental, and the GDP_PT and GDP_USA variables are also important to be used in the input of the model because the prediction results became improved. The best results were obtained with the output in the logarithmic domain and using the previous 12 months besides the 6 mentioned variables in the input and 18 nodes in the hidden layer. The best model achieved a mean absolute percentage error (MAPE) of 6.5% and 0,696 for the Pearson correlation coefficient.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationConstantino, Hortêncio; Fernandes, Paula O.; Teixeira, João Paulo (2015). Tourism demand modeling and forecasting with artificial neural network models: the Mozambique case study. In IV Congresso Internacional de Turismo. Guimarãespt_PT
dc.identifier.urihttp://hdl.handle.net/10198/16902
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectModelingpt_PT
dc.subjectForecastingpt_PT
dc.subjectTourism demandpt_PT
dc.subjectArtificial neural networkspt_PT
dc.subjectMozambiquept_PT
dc.titleTourism demand modeling and forecasting with artificial neural network models: the Mozambique case studypt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.titleIV Congresso Internacional de Turismo, 2015. Guimarães. Portugalpt_PT
person.familyNameFernandes
person.familyNameTeixeira
person.givenNamePaula Odete
person.givenNameJoão Paulo
person.identifierN-3804-2013
person.identifier663194
person.identifier.ciencia-id991D-9D1E-D67D
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0001-8714-4901
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id35200741800
person.identifier.scopus-author-id57069567500
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication2269147c-2b53-4d1c-bc1b-f1367d197262
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery2269147c-2b53-4d1c-bc1b-f1367d197262

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CIT_ANN_2015.pdf
Size:
496.52 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: