Publicação
Multi AGV industrial supervisory system
| dc.contributor.author | Cruz, Ana Luísa Sampaio | |
| dc.contributor.author | Matos, Diogo | |
| dc.contributor.author | Lima, José | |
| dc.contributor.author | Costa, Paulo Gomes da | |
| dc.contributor.author | Costa, Pedro | |
| dc.date.accessioned | 2022-04-05T08:32:38Z | |
| dc.date.available | 2022-04-05T08:32:38Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Automated guided vehicles (AGV) represent a key element in industries’ intralogistics and the use of AGV fleets bring multiple advantages. Nevertheless, coordinating a fleet of AGV is already a complex task but when exposed to delays in the trajectory and communication faults it can represent a threat, compromising the safety, productivity and efficiency of these systems. Concerning this matter, trajectory planning algorithms allied with supervisory systems have been studied and developed. This article aims to, based on work developed previously, implement and test a Multi AGV Supervisory System on real robots and analyse how the system responds to the dynamic of a real environment, analysing its intervention, what influences it and how the execution time is affected. | pt_PT |
| dc.description.sponsorship | This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project UIDB/50014/2020. | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Cruz, Ana; Matos, Diogo; Lima, José; Costa, Paulo; Costa, Pedro (2021). Multi AGV industrial supervisory system. In Pereira, Ana I.; Fernandes, Florbela P.; Coelho, João Paulo; Teixeira, João Paulo; Pacheco, Maria F.; Alves, Paulo; Lopes, Rui Pedro (Eds.) Optimization, learning algorithms and applications: first International Conference, OL2A 2021. Cham: Springer Nature. p. 203-218. ISBN 978-3-030-91884-2 | pt_PT |
| dc.identifier.doi | 10.1007/978-3-030-91885-9_15 | pt_PT |
| dc.identifier.isbn | 978-3-030-91884-2 | |
| dc.identifier.uri | http://hdl.handle.net/10198/25334 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | Springer Nature | pt_PT |
| dc.relation | INESC TEC- Institute for Systems and Computer Engineering, Technology and Science | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
| dc.subject | Multi AGV coordination | pt_PT |
| dc.subject | Time enhanced A* | pt_PT |
| dc.subject | Real implementation | pt_PT |
| dc.title | Multi AGV industrial supervisory system | pt_PT |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | INESC TEC- Institute for Systems and Computer Engineering, Technology and Science | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50014%2F2020/PT | |
| oaire.citation.endPage | 218 | pt_PT |
| oaire.citation.startPage | 203 | pt_PT |
| oaire.citation.title | Optimization, learning algorithms and applications: first International Conference, OL2A 2021 | pt_PT |
| oaire.citation.volume | 1488 | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| person.familyName | Lima | |
| person.givenName | José | |
| person.identifier | R-000-8GD | |
| person.identifier.ciencia-id | 6016-C902-86A9 | |
| person.identifier.orcid | 0000-0001-7902-1207 | |
| person.identifier.rid | L-3370-2014 | |
| person.identifier.scopus-author-id | 55851941311 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | restrictedAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isAuthorOfPublication.latestForDiscovery | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isProjectOfPublication | 2957d2e8-0cce-46ca-8e0e-d15ccf4f290e | |
| relation.isProjectOfPublication.latestForDiscovery | 2957d2e8-0cce-46ca-8e0e-d15ccf4f290e |
Ficheiros
Principais
1 - 1 de 1
Miniatura indisponível
- Nome:
- Multi AGV.pdf
- Tamanho:
- 3.05 MB
- Formato:
- Adobe Portable Document Format
