Repository logo
 
Publication

Diabetic retinopathy grading using blended deep learning

dc.contributor.authorMonteiro, Fernando C.
dc.date.accessioned2024-01-15T12:14:29Z
dc.date.available2024-01-15T12:14:29Z
dc.date.issued2023
dc.description.abstractDiabetic retinopathy is a complication of diabetes that is mainly caused by the damage of the blood vessels located in the retina. Retinal screening contributes to early detection and treatment of diabetic retinopathy. DR has five stages, namely healthy, mild, moderate, severe and proliferative diabetic retinopathy. Computer-Aided diagnosis approaches are needed to allow an early de-Tection and treatment. Several automated deep learning (DL) based approaches have been proven to be a powerful tool for DR grading. However, these approaches are usually based on one DL architecture only which could produce over-fitted results. An-other identified problem is the use of imbalanced datasets. In this paper, we proposed a blended deep learning approach obtained by training several individual DL models, using a 5-fold cross-validation technique and combining their predictions in a final score. This blended model highlights each individual model where it performs best and discredits where it performs poorly, increasing the robustness of the results. The experiments were conducted on a balanced DDR dataset containing 33310 retina fundus images equally distributed for the DR grades. An explainability algorithm was also used to show the efficiency of the proposed approach in detecting DR signs.pt_PT
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMonteiro, Fernando C. (2023). Diabetic retinopathy grading using blended deep learning. Procedia Computer Science. ISSN 1877-0509. 219, p. 1097-1104pt_PT
dc.identifier.doi10.1016/j.procs.2023.01.389pt_PT
dc.identifier.issn1877-0509
dc.identifier.urihttp://hdl.handle.net/10198/29195
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationLA/P/0007/2021pt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectBlended deep learningpt_PT
dc.subjectDiabetic retinopathy gradingpt_PT
dc.subjectRetina fundus imagespt_PT
dc.subjectRetinopathy levelspt_PT
dc.titleDiabetic retinopathy grading using blended deep learningpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.citation.endPage1104pt_PT
oaire.citation.startPage1097pt_PT
oaire.citation.titleProcedia Computer Sciencept_PT
oaire.citation.volume219pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMonteiro
person.givenNameFernando C.
person.identifier.ciencia-id2019-BDBF-10E2
person.identifier.orcid0000-0002-1421-8006
person.identifier.ridH-9213-2016
person.identifier.scopus-author-id8986162600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication363b6c37-282c-4cd6-bb54-3c97cc700d78
relation.isAuthorOfPublication.latestForDiscovery363b6c37-282c-4cd6-bb54-3c97cc700d78
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1877050923003988.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: