Repository logo
 
Publication

Angle assessment for upper limb rehabilitation: a novel light detection and ranging (LiDAR)-based approach

dc.contributor.authorKlein, Luan C.
dc.contributor.authorChellal, Arezki Abderrahim
dc.contributor.authorGrilo, Vinicius F.S.B.
dc.contributor.authorBraun, João
dc.contributor.authorGonçalves, José
dc.contributor.authorPacheco, Maria F.
dc.contributor.authorFernandes, Florbela P.
dc.contributor.authorMonteiro, Fernando C.
dc.contributor.authorLima, José
dc.date.accessioned2024-05-03T11:34:34Z
dc.date.available2024-05-03T11:34:34Z
dc.date.issued2024
dc.description.abstractThe accurate measurement of joint angles during patient rehabilitation is crucial for informed decision making by physiotherapists. Presently, visual inspection stands as one of the prevalent methods for angle assessment. Although it could appear the most straightforward way to assess the angles, it presents a problem related to the high susceptibility to error in the angle estimation. In light of this, this study investigates the possibility of using a new approach to angle calculation: a hybrid approach leveraging both a camera and LiDAR technology, merging image data with point cloud information. This method employs AI-driven techniques to identify the individual and their joints, utilizing the cloud-point data for angle computation. The tests, considering different exercises with different perspectives and distances, showed a slight improvement compared to using YOLO v7 for angle calculation. However, the improvement comes with higher system costs when compared with other image-based approaches due to the necessity of equipment such as LiDAR and a loss of fluidity during the exercise performance. Therefore, the cost-benefit of the proposed approach could be questionable. Nonetheless, the results hint at a promising field for further exploration and the potential viability of using the proposed methodology.pt_PT
dc.description.sponsorshipThis work has been supported by SmartHealth—Inteligência Artificial para Cuidados de Saúde Personalizados ao Longo da Vida, under the project number NORTE-01-0145-FEDER- 000045. The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). Arezki A. Chellal is grateful to the FCT Foundation for its support through the FCT PhD scholarship with reference UI/BD/154484/2022. João Braun is grateful to the FCT Foundation for its support through the FCT PhD scholarship with reference 2023.04536.BD.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationKlein, Luan C.; Chellal, Arezki Abderrahim; Grilo, Vinicius; Braun, João; Gonçalves, José; Pacheco, Maria F.; Fernandes, Florbela P.; Monteiro, Fernando C.; Lima, José (2024). Angle Assessment for Upper Limb Rehabilitation: A Novel Light Detection and Ranging (LiDAR)-Based Approach. Sensors. EISSN 1424-8220. 24:2, p. 1-23pt_PT
dc.identifier.doi10.3390/s24020530pt_PT
dc.identifier.eissn1424-8220
dc.identifier.urihttp://hdl.handle.net/10198/29710
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationLA/P/0007/2021pt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectJoin angle measurementpt_PT
dc.subjectArtificial intelligencept_PT
dc.subjectMotion capturept_PT
dc.subjectLiDARpt_PT
dc.subjectRobotic rehabilitationpt_PT
dc.titleAngle assessment for upper limb rehabilitation: a novel light detection and ranging (LiDAR)-based approachpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.citation.endPage23pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleSensorspt_PT
oaire.citation.volume24pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameChellal
person.familyNameBraun
person.familyNameGonçalves
person.familyNamePacheco
person.familyNameFernandes
person.familyNameMonteiro
person.familyNameLima
person.givenNameArezki Abderrahim
person.givenNameJoão A.
person.givenNameJosé
person.givenNameMaria F.
person.givenNameFlorbela P.
person.givenNameFernando C.
person.givenNameJosé
person.identifierR-000-7ZW
person.identifierR-000-8GD
person.identifier.ciencia-id8215-2A5A-EADB
person.identifier.ciencia-idBF13-D66B-7D08
person.identifier.ciencia-id8112-DCE2-D025
person.identifier.ciencia-idF319-DAC3-8F15
person.identifier.ciencia-id501D-6FD0-CC53
person.identifier.ciencia-id2019-BDBF-10E2
person.identifier.ciencia-id6016-C902-86A9
person.identifier.orcid0000-0002-9190-6865
person.identifier.orcid0000-0003-0276-4314
person.identifier.orcid0000-0002-5499-1730
person.identifier.orcid0000-0001-7915-0391
person.identifier.orcid0000-0001-9542-4460
person.identifier.orcid0000-0002-1421-8006
person.identifier.orcid0000-0001-7902-1207
person.identifier.ridB-8547-2018
person.identifier.ridH-9213-2016
person.identifier.ridL-3370-2014
person.identifier.scopus-author-id57211244317
person.identifier.scopus-author-id48361230200
person.identifier.scopus-author-id36802474600
person.identifier.scopus-author-id35179471000
person.identifier.scopus-author-id8986162600
person.identifier.scopus-author-id55851941311
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication59a3f1c2-d0ee-4fb2-b27a-025ebfd8f20b
relation.isAuthorOfPublicationb8dfcbd7-1b89-48f3-afee-3e7d3f3c90d4
relation.isAuthorOfPublication6a3b0b39-7fe9-4450-94f4-ced3941947da
relation.isAuthorOfPublicatione56596ca-3238-4fde-ace1-abb363a222e8
relation.isAuthorOfPublication1f7a9fde-7a4d-4b2c-8f9d-dab571163c33
relation.isAuthorOfPublication363b6c37-282c-4cd6-bb54-3c97cc700d78
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublication.latestForDiscovery1f7a9fde-7a4d-4b2c-8f9d-dab571163c33
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
sensors-24-00530.pdf
Size:
26.94 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: