Publication
Angle assessment for upper limb rehabilitation: a novel light detection and ranging (LiDAR)-based approach
dc.contributor.author | Klein, Luan C. | |
dc.contributor.author | Chellal, Arezki Abderrahim | |
dc.contributor.author | Grilo, Vinicius F.S.B. | |
dc.contributor.author | Braun, João | |
dc.contributor.author | Gonçalves, José | |
dc.contributor.author | Pacheco, Maria F. | |
dc.contributor.author | Fernandes, Florbela P. | |
dc.contributor.author | Monteiro, Fernando C. | |
dc.contributor.author | Lima, José | |
dc.date.accessioned | 2024-05-03T11:34:34Z | |
dc.date.available | 2024-05-03T11:34:34Z | |
dc.date.issued | 2024 | |
dc.description.abstract | The accurate measurement of joint angles during patient rehabilitation is crucial for informed decision making by physiotherapists. Presently, visual inspection stands as one of the prevalent methods for angle assessment. Although it could appear the most straightforward way to assess the angles, it presents a problem related to the high susceptibility to error in the angle estimation. In light of this, this study investigates the possibility of using a new approach to angle calculation: a hybrid approach leveraging both a camera and LiDAR technology, merging image data with point cloud information. This method employs AI-driven techniques to identify the individual and their joints, utilizing the cloud-point data for angle computation. The tests, considering different exercises with different perspectives and distances, showed a slight improvement compared to using YOLO v7 for angle calculation. However, the improvement comes with higher system costs when compared with other image-based approaches due to the necessity of equipment such as LiDAR and a loss of fluidity during the exercise performance. Therefore, the cost-benefit of the proposed approach could be questionable. Nonetheless, the results hint at a promising field for further exploration and the potential viability of using the proposed methodology. | pt_PT |
dc.description.sponsorship | This work has been supported by SmartHealth—Inteligência Artificial para Cuidados de Saúde Personalizados ao Longo da Vida, under the project number NORTE-01-0145-FEDER- 000045. The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). Arezki A. Chellal is grateful to the FCT Foundation for its support through the FCT PhD scholarship with reference UI/BD/154484/2022. João Braun is grateful to the FCT Foundation for its support through the FCT PhD scholarship with reference 2023.04536.BD. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Klein, Luan C.; Chellal, Arezki Abderrahim; Grilo, Vinicius; Braun, João; Gonçalves, José; Pacheco, Maria F.; Fernandes, Florbela P.; Monteiro, Fernando C.; Lima, José (2024). Angle Assessment for Upper Limb Rehabilitation: A Novel Light Detection and Ranging (LiDAR)-Based Approach. Sensors. EISSN 1424-8220. 24:2, p. 1-23 | pt_PT |
dc.identifier.doi | 10.3390/s24020530 | pt_PT |
dc.identifier.eissn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10198/29710 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | MDPI | pt_PT |
dc.relation | LA/P/0007/2021 | pt_PT |
dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Join angle measurement | pt_PT |
dc.subject | Artificial intelligence | pt_PT |
dc.subject | Motion capture | pt_PT |
dc.subject | LiDAR | pt_PT |
dc.subject | Robotic rehabilitation | pt_PT |
dc.title | Angle assessment for upper limb rehabilitation: a novel light detection and ranging (LiDAR)-based approach | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
oaire.citation.endPage | 23 | pt_PT |
oaire.citation.issue | 2 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | Sensors | pt_PT |
oaire.citation.volume | 24 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Chellal | |
person.familyName | Braun | |
person.familyName | Gonçalves | |
person.familyName | Pacheco | |
person.familyName | Fernandes | |
person.familyName | Monteiro | |
person.familyName | Lima | |
person.givenName | Arezki Abderrahim | |
person.givenName | João A. | |
person.givenName | José | |
person.givenName | Maria F. | |
person.givenName | Florbela P. | |
person.givenName | Fernando C. | |
person.givenName | José | |
person.identifier | R-000-7ZW | |
person.identifier | R-000-8GD | |
person.identifier.ciencia-id | 8215-2A5A-EADB | |
person.identifier.ciencia-id | BF13-D66B-7D08 | |
person.identifier.ciencia-id | 8112-DCE2-D025 | |
person.identifier.ciencia-id | F319-DAC3-8F15 | |
person.identifier.ciencia-id | 501D-6FD0-CC53 | |
person.identifier.ciencia-id | 2019-BDBF-10E2 | |
person.identifier.ciencia-id | 6016-C902-86A9 | |
person.identifier.orcid | 0000-0002-9190-6865 | |
person.identifier.orcid | 0000-0003-0276-4314 | |
person.identifier.orcid | 0000-0002-5499-1730 | |
person.identifier.orcid | 0000-0001-7915-0391 | |
person.identifier.orcid | 0000-0001-9542-4460 | |
person.identifier.orcid | 0000-0002-1421-8006 | |
person.identifier.orcid | 0000-0001-7902-1207 | |
person.identifier.rid | B-8547-2018 | |
person.identifier.rid | H-9213-2016 | |
person.identifier.rid | L-3370-2014 | |
person.identifier.scopus-author-id | 57211244317 | |
person.identifier.scopus-author-id | 48361230200 | |
person.identifier.scopus-author-id | 36802474600 | |
person.identifier.scopus-author-id | 35179471000 | |
person.identifier.scopus-author-id | 8986162600 | |
person.identifier.scopus-author-id | 55851941311 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 59a3f1c2-d0ee-4fb2-b27a-025ebfd8f20b | |
relation.isAuthorOfPublication | b8dfcbd7-1b89-48f3-afee-3e7d3f3c90d4 | |
relation.isAuthorOfPublication | 6a3b0b39-7fe9-4450-94f4-ced3941947da | |
relation.isAuthorOfPublication | e56596ca-3238-4fde-ace1-abb363a222e8 | |
relation.isAuthorOfPublication | 1f7a9fde-7a4d-4b2c-8f9d-dab571163c33 | |
relation.isAuthorOfPublication | 363b6c37-282c-4cd6-bb54-3c97cc700d78 | |
relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
relation.isAuthorOfPublication.latestForDiscovery | 1f7a9fde-7a4d-4b2c-8f9d-dab571163c33 | |
relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
relation.isProjectOfPublication.latestForDiscovery | 6e01ddc8-6a82-4131-bca6-84789fa234bd |