Repository logo
 
Publication

Rapid screening of fumonisins in maize using near-infrared spectroscopy (NIRS) and machine learning algorithms

datacite.subject.fosCiências Agrárias::Biotecnologia Agrária e Alimentar
datacite.subject.sdg03:Saúde de Qualidade
dc.contributor.authorSampaio, Pedro
dc.contributor.authorBarros, Sílvia Cruz
dc.contributor.authorFreitas, Andreia
dc.contributor.authorSilva, Ana Sanches
dc.contributor.authorBrites, Carla
dc.contributor.authorCarbas, Bruna
dc.date.accessioned2025-04-24T09:44:08Z
dc.date.available2025-04-24T09:44:08Z
dc.date.issued2025
dc.description.abstractFumonisins occurrence in maize represents a significant global challenge, impacting economic stability and food safety. This study evaluates the potential of near-infrared (NIR) spectroscopy combined with chemometric al- gorithms to detect fumonisins in maize. For fumonisin B1 (FB1) and B2 (FB2) levels were developed predictive NIR models using partial least squares (PLS) and artificial neural networks (ANN). PLS models demonstrated strong correlation coefficient (R2) values of 0.90 (FB1), 0.98 (FB2), and 0.91 (FB1 + FB2) for calibration, with ratio of prediction to deviation (RPD) values ranging 2.8–3.6. Similarly, ANN models showed good predictive performance, particularly for FB1 + FB2, with R = 0.99, and the root means square error (RMSE) of 131 μg/kg for calibration; and R = 0.95, RMSE = 656 μg/kg for validation. These findings underscore the efficacy of NIR spectroscopy as a rapid, non-destructive tool for fumonisin screening in maize, with chemometric algorithms enhancing model accuracy, offering a valuable method for ensuring food safety.por
dc.description.sponsorshipWe sincerely acknowledge Tiago Silva Pinto for assisting with farmer selection, for João Coimbra and Nuno Tomé by the sampling logistics.
dc.identifier.doi10.1016/j.fochx.2025.102351
dc.identifier.issn2590-1575
dc.identifier.urihttp://hdl.handle.net/10198/34434
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relation.ispartofFood Chemistry: X
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectMaize
dc.subjectFumonisin B1
dc.subjectFumonisin B2
dc.subjectPredictive models
dc.subjectNIR spectroscopy
dc.subjectChemometrics
dc.subjectArtificial neural network
dc.titleRapid screening of fumonisins in maize using near-infrared spectroscopy (NIRS) and machine learning algorithmseng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage8
oaire.citation.startPage1
oaire.citation.titleFood Chemistry-X
oaire.citation.volume27
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCarbas
person.givenNameBruna
person.identifier.ciencia-idA41A-376D-3E8B
person.identifier.orcid0000-0002-5941-8749
relation.isAuthorOfPublicationbe27c391-b797-4aaf-851a-2c35c88a6b77
relation.isAuthorOfPublication.latestForDiscoverybe27c391-b797-4aaf-851a-2c35c88a6b77

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2590157525001981-main.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: