Repository logo
 
Publication

Predictive data analysis driven multi-agent system approach for electrical micro grids management

dc.contributor.authorQueiroz, Jonas
dc.contributor.authorLeitão, Paulo
dc.contributor.authorDias, Artur Jorge Ferreira da Costa
dc.date.accessioned2018-02-26T14:56:13Z
dc.date.available2018-02-26T14:56:13Z
dc.date.issued2016
dc.description.abstractMicro grid represents an emergent paradigm to address the challenges of recent smart electrical grid visions, where several small-scale and distributed electrical units cooperate to achieve higher levels of energy self-sustainability, by reducing the main grid dependence. Nevertheless, the realization of this paradigm requires advanced intelligent approaches that are able to effectively manage the micro grid infrastructure and its elements. Multi-agent systems provide a suitable framework to support the development of such systems, where autonomous agents endowed with predictive data analysis capabilities take advantage of the large amount of data produced to predict the renewable energy production and consumption. In this context, this paper presents a predictive data analysis driven multi-agent system for the management of micro grids renewable energy production. The proposed approach was applied to an experimental case study, considering different predictive algorithms and data sources for the short and midterm forecasting of the production of wind and photovoltaic energybased units.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationQueiroz, Jonas; Leitão, Paulo; Dias, Artur (2016). Predictive data analysis driven multi-agent system approach for electrical micro grids management. In 25th IEEE International Symposium on Industrial Electronics, ISIE 2016. Santa Clara Convention CenterSanta Clara; United States. p. 738-743. ISBN 978-1-5090-0873-5pt_PT
dc.identifier.doi10.1109/ISIE.2016.7744981pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/16001
dc.language.isoengpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectEletrical micro gridpt_PT
dc.subjectPredictive data analysispt_PT
dc.subjectMulti-agent systemspt_PT
dc.subjectRenewable energy production forecastpt_PT
dc.titlePredictive data analysis driven multi-agent system approach for electrical micro grids managementpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferencePlaceSanta Clara Convention CenterSanta Clara; United Statespt_PT
oaire.citation.endPage743pt_PT
oaire.citation.startPage738pt_PT
oaire.citation.title25th IEEE International Symposium on Industrial Electronics, ISIE 2016pt_PT
person.familyNameQueiroz
person.familyNameLeitão
person.givenNameJonas
person.givenNamePaulo
person.identifierhttps://scholar.google.com/citations?user=UnhjE9gAAAAJ
person.identifierA-8390-2011
person.identifier.ciencia-idBF12-BBDD-CCC5
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.orcid0000-0001-5416-4762
person.identifier.orcid0000-0002-2151-7944
person.identifier.scopus-author-id57188655139
person.identifier.scopus-author-id35584388900
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication49c3a549-2500-4d74-8657-9d9baafffea3
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication.latestForDiscovery49c3a549-2500-4d74-8657-9d9baafffea3

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
07744981.pdf
Size:
425.21 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: