Repository logo
 
Publication

A GPU implementation of the analog ensemble method

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorCrico, Ruben
dc.contributor.authorCharles, Ines
dc.contributor.authorBalsa, Carlos
dc.contributor.authorRufino, José
dc.date.accessioned2025-06-18T14:50:23Z
dc.date.available2025-06-18T14:50:23Z
dc.date.issued2025
dc.description.abstractThe Analog Ensemble (AnEn) method can be used to reconstruct incomplete time series using correlated series. Since the AnEn method may use data including several variables through long periods of time, its storage and computational cost may be substantial, slowing down reconstructions. This paper presents a full GPU implementation of the AnEn method, based on PyCUDA, that leads to a significant a cceleration of its execution. The implementation resorts to several techniques that seek to minimize the consumption of GPU global memory in the various steps of the AnEn algorithm, thus making room for larger input datasets. This is further reinforced by the use of batch processing as a way to automatically adapt the datasets size to the GPU memory available. The GPU implementation was tested on a meteorological dataset spanning 10 years, exhibiting a 30-fold speedup in the reconstruction time against a comparable CPU-based multicore version executed with up to 48 cores. The impact on the reconstruction error of changes on several important parameters of the implementation was also assessed.eng
dc.description.sponsorshipThis work was supported by national funds through FCT/MCTES (PIDDAC): UID/05757 - Research Centre in Digitalization and Intelligent Robotics/ Centro de Investigação em Digitalização e Robótica Inteligente (CeDRI).
dc.identifier.citationCrico, Ruben; Charles, Ines; Balsa, Carlos; Rufino, José (2025). A GPU implementation of the analog ensemble method. In 33rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing. Toulouse. p. 1-8
dc.identifier.doi10.1109/pdp66500.2025.00039
dc.identifier.isbn979-833152493-7
dc.identifier.urihttp://hdl.handle.net/10198/34614
dc.language.isoeng
dc.peerreviewedyes
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.ispartof2025 33rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectHindcasting
dc.subjectAnalog Ensemble
dc.subjectScientific Computing
dc.subjectParallel Computing: GPU Computing
dc.titleA GPU implementation of the analog ensemble methodeng
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.endPage8
oaire.citation.startPage1
oaire.citation.titleProceedings - 33rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2025
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameBalsa
person.familyNameRufino
person.givenNameCarlos
person.givenNameJosé
person.identifier1721518
person.identifier.ciencia-idDE1E-2F7A-AAB1
person.identifier.ciencia-idC414-F47F-6323
person.identifier.orcid0000-0003-2431-8665
person.identifier.orcid0000-0002-1344-8264
person.identifier.ridM-8735-2013
person.identifier.scopus-author-id23391719100
person.identifier.scopus-author-id55947199100
relation.isAuthorOfPublicationd0e5ccff-9696-4f4f-9567-8d698a6bf17d
relation.isAuthorOfPublication1e24d2ce-a354-442a-bef8-eebadd94b385
relation.isAuthorOfPublication.latestForDiscoveryd0e5ccff-9696-4f4f-9567-8d698a6bf17d

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A_GPU_Implementation_of_the_Analog_Ensemble_Method.pdf
Size:
906.7 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: