Repository logo
 
Publication

Is diabetic retinopathy grading biased by imbalanced datasets?

dc.contributor.authorMonteiro, Fernando C.
dc.contributor.authorRufino, José
dc.date.accessioned2023-02-08T09:56:55Z
dc.date.available2023-02-08T09:56:55Z
dc.date.issued2022
dc.description.abstractDiabetic retinopathy (DR) is one of the most severe complications of diabetes and the leading cause of vision loss and even blindness. Retinal screening contributes to early detection and treatment of diabetic retinopathy. This eye disease has five stages, namely normal, mild, moderate, severe and proliferative diabetic retinopathy. Usually, highly trained ophthalmologists are capable of manually identifying the presence or absence of retinopathy in retinal images. Several automated deep learning (DL) based approaches have been proposed and they have been proven to be a powerful tool for DR detection and classification. However, these approaches are usually biased by the cardinality of each grade set, as the overall accuracy benefits the largest sets in detriment of smaller ones. In this paper, we applied several state-of-the-art DL approaches, using a 5-fold cross-validation technique. The experiments were conducted on a balanced DDR dataset containing 31330 retina fundus images by completing the small grade sets with samples from other well known datasets. This balanced dataset increases robustness of training and testing tasks as they used samples from several origins and obtained with different equipment. The results confirm the bias introduced by using imbalanced datasets in automatic diabetic retinopathy grading.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMonteiro, Fernando C.; Rufino, José (2022). Is diabetic retinopathy grading biased by imbalanced datasets?. In International Conference on Optimization, Learning Algorithms and Applications: book of abstracts. Bragança: Instituto Politécnico de Bragança. ISBN 978-972-745-309-2.pt_PT
dc.identifier.isbn978-972-745-309-2
dc.identifier.urihttp://hdl.handle.net/10198/26798
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherInstituto Politécnico de Bragançapt_PT
dc.relationLA/P/0007/2021pt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectDiabetic retinopathy gradingpt_PT
dc.subjectDeep learning networkpt_PT
dc.subjectRetinal fundus imagespt_PT
dc.subjectDiabetic retinopathy datasetpt_PT
dc.subjectImbalanced datasetpt_PT
dc.titleIs diabetic retinopathy grading biased by imbalanced datasets?pt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.citation.conferencePlaceBragança - Portugalpt_PT
oaire.citation.titleInternational Conference on Optimization, Learning Algorithms and Applications, OL2A 2022pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMonteiro
person.familyNameRufino
person.givenNameFernando C.
person.givenNameJosé
person.identifier.ciencia-id2019-BDBF-10E2
person.identifier.ciencia-idC414-F47F-6323
person.identifier.orcid0000-0002-1421-8006
person.identifier.orcid0000-0002-1344-8264
person.identifier.ridH-9213-2016
person.identifier.scopus-author-id8986162600
person.identifier.scopus-author-id55947199100
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication363b6c37-282c-4cd6-bb54-3c97cc700d78
relation.isAuthorOfPublication1e24d2ce-a354-442a-bef8-eebadd94b385
relation.isAuthorOfPublication.latestForDiscovery363b6c37-282c-4cd6-bb54-3c97cc700d78
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
OL2A_Book_of_Abstracts.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: