Repository logo
 
Publication

Determinants of nursing homes performance: the case of portuguese santas casas da Misericórdia

dc.contributor.authorVeloso, André Filipe Santos
dc.contributor.authorVaz, Clara B.
dc.contributor.authorAlves, Jorge
dc.date.accessioned2020-04-06T08:47:24Z
dc.date.available2020-04-06T08:47:24Z
dc.date.issued2018
dc.description.abstractThis study aims to evaluate the economic efficiency of Nursing Homes owned by 96 Santas Casas da Misericórdia (SCM) and the determinants that influenced their efficiency in 2012 and 2013. The SCM are the oldest non-profit entities, which belong to Third Sector in Portugal, provide this social response and receive significant financial contributions annually from the state. The study is developed in two stages. In the first stage, the efficiency scores were calculated through the non-parametric DEA technique. In the second stage, Tobit regression is used to verify the effect of certain organizational variables on efficiency, namely the number of users and existence of Nursing Home chains. The results of the DEA model show that the efficiency average is 81.9%, and only 10 out of 96 Nursing Homes are efficient. Tobit regression shows that the number of users has a positive effect on the efficiency of Nursing Homes, whereas the existence of Nursing Home chains affects their efficiency negatively.pt_PT
dc.description.sponsorshipThis work is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project "POCI-01-0145- FEDER-006961", and by National Funds through fhe Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia as part of project "UID/EEA/50014/2013".
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationVeloso, André; S. Vaz, Clara B.; Alves, Jorge (2018). Determinants of nursing homes performance: the case of portuguese santas casas da Misericórdia. In Vaz A., Almeida J., Oliveira J., Pinto A. (Eds.) Operational Research. APDIO 2017. Springer, Cham. 223, p. 393-409. ISBN 978-3-319-71583-4pt_PT
dc.identifier.doi10.1007/978-3-319-71583-4_26pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/21513
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer, Champt_PT
dc.relationINESC TEC - INESC Technology and Science
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectData envelopment analysispt_PT
dc.subjectEfficiencypt_PT
dc.subjectNursing homespt_PT
dc.subjectThird sectorpt_PT
dc.titleDeterminants of nursing homes performance: the case of portuguese santas casas da Misericórdiapt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleINESC TEC - INESC Technology and Science
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F50014%2F2013/PT
oaire.citation.endPage409pt_PT
oaire.citation.startPage393pt_PT
oaire.citation.titleSpringer Proceedings in Mathematics & Statisticspt_PT
oaire.citation.volume223pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameVaz
person.familyNameAlves
person.givenNameClara B.
person.givenNameJorge
person.identifierR-001-FQC
person.identifier.ciencia-id9611-3386-E516
person.identifier.ciencia-id2718-FF3E-8B6B
person.identifier.orcid0000-0001-9862-6068
person.identifier.orcid0000-0002-5168-8795
person.identifier.ridF-1519-2016
person.identifier.ridW-4214-2017
person.identifier.scopus-author-id56352045500
person.identifier.scopus-author-id57197042752
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication34bc350c-28d9-4b06-9874-b2b0dba58d1d
relation.isAuthorOfPublication21573167-7f60-4b0c-9777-f75aa3b53025
relation.isAuthorOfPublication.latestForDiscovery34bc350c-28d9-4b06-9874-b2b0dba58d1d
relation.isProjectOfPublicationc24003da-0068-45dd-a63c-49a0628071c1
relation.isProjectOfPublication.latestForDiscoveryc24003da-0068-45dd-a63c-49a0628071c1

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PAPER_veloso2018.pdf
Size:
192.27 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: