Name: | Description: | Size: | Format: | |
---|---|---|---|---|
747.43 KB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A utilização de materiais inteligentes vêm se tornando essencial para o aperfeiçoamento de
aplicações existentes e o desenvolvimento de novas tecnologias. As ligas com memória de forma
fazem parte desta classe de materiais, onde as suas características ímpares possibilitam a aplicação
como por exemplo: amortecedores, sensores e atuadores. Tendo como objetivo a aplicação destas
ligas, será necessário a possibilidade de simular fielmente o comportamento destas, de forma a
diminuir custos relacionados com produção de protótipos e o respectivo tempo necessário para
produzi-los. O presente trabalho vem comparar as soluções apresentada por dois modelos
constitutivos para a mesma liga de Níquel-Titânio, utilizando um algoritmo implementado em
Matlab® e o software comercial Ansys® Workbench™. Os resultados apresentam as diferenças
quantitativas nos modelos e a respectiva análise mostra os fenômenos que foram levados em conta
durante a simulação. Pelo que são necessários ensaios experimentais para a validação dos
fenômenos mencionados, calibração dos modelos e comparação para assim identificar o modelo
mais representativo na representação do comportamento real da liga.
The use of smart materials has become essential for the improvement of existing applications and the development of new technologies. Shape Memory Alloys (SMA) are part of this class of materials, where their unique characteristics allow their application as shock absorbers, sensors and actuators, for example. To apply these alloys, it is necessary simulate reliably their behavior, in order to reduce costs related to the prototype production and time to build them. The present research seeks the comparison between two solutions by different constitutive models for the same Nickel-Titanium alloy. One is using an algorithm implemented in Matlab® and the other with the result available in the literature obtained by commercial software Ansys® Workbench™. The results show the quantitative differences in the models and the phenomena that were taken into account during the simulation. Therefore, experimental tests are required for the validation of the mentioned phenomena, calibration and comparison of the models to identify the most representative model in the representation of the actual behavior of the alloy.
The use of smart materials has become essential for the improvement of existing applications and the development of new technologies. Shape Memory Alloys (SMA) are part of this class of materials, where their unique characteristics allow their application as shock absorbers, sensors and actuators, for example. To apply these alloys, it is necessary simulate reliably their behavior, in order to reduce costs related to the prototype production and time to build them. The present research seeks the comparison between two solutions by different constitutive models for the same Nickel-Titanium alloy. One is using an algorithm implemented in Matlab® and the other with the result available in the literature obtained by commercial software Ansys® Workbench™. The results show the quantitative differences in the models and the phenomena that were taken into account during the simulation. Therefore, experimental tests are required for the validation of the mentioned phenomena, calibration and comparison of the models to identify the most representative model in the representation of the actual behavior of the alloy.
Description
Keywords
Ligas com memória de forma Estudo numérico-experimental, caracterização do comportamento do material
Citation
Hilário, Jean; Andrade, C.A.R.; Braz-César, M.T.; Borges, Adailton (2019). Comparação da solucão numérica de equações constitutivas para ligas com memória der forma. MECÂNICA EXPERIMENTAL. ISSN 1646-7078. 30:31, p. 101-106