Publication
Machine learning to identify olive-tree cultivars
| dc.contributor.author | Mendes, João | |
| dc.contributor.author | Lima, José | |
| dc.contributor.author | Costa, Lino | |
| dc.contributor.author | Rodrigues, Nuno | |
| dc.contributor.author | Brandão, Diego | |
| dc.contributor.author | Leitão, Paulo | |
| dc.contributor.author | Pereira, Ana I. | |
| dc.date.accessioned | 2023-02-27T16:59:23Z | |
| dc.date.available | 2023-02-27T16:59:23Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | The identification of olive-tree cultivars is a lengthy and expensive process, therefore, the proposed work presents a new strategy for identifying different cultivars of olive trees using their leaf and machine learning algorithms. In this initial case, four autochthonous cultivars of the Trás-os-Montes region in Portugal are identified (Cobrançosa, Madural, Negrinha e Verdeal). With the use of this type of algorithm, it is expected to replace the previous techniques, saving time and resources for farmers. Three different machine learning algorithms (Decision Tree, SVM, Random Forest) were also compared and the results show an overall accuracy rate of the best algorithm (Random Forest) of approximately 93%. | pt_PT |
| dc.description.sponsorship | This work was carried out under the Project “OleaChain: Competências para a sustentabilidade e inovação da cadeia de valor do olival tradicional no Norte Interior de Portugal” (NORTE06-3559-FSE-000188), an operation to hire highly qualified human resources, funded by NORTE 2020 through the European Social Fund (ESF). The authors are grateful to the Foundation for Science and Technology (FCT,Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). | pt_PT |
| dc.description.version | info:eu-repo/semantics/acceptedVersion | pt_PT |
| dc.identifier.citation | Mendes, João; Lima, José; Costa, Lino; Rodrigues, Nuno G.; Brandão, Diego; Leitão, Paulo; Pereira, Ana I. (2022). Machine learning to identify olive-tree cultivars. In 2nd International Conference on Optimization, Learning Algorithms and Applications, OL2A 2022. Bragança | pt_PT |
| dc.identifier.doi | 10.1007/978-3-031-23236-7_56 | |
| dc.identifier.uri | http://hdl.handle.net/10198/27263 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
| dc.subject | Machine learning | pt_PT |
| dc.subject | Identification | pt_PT |
| dc.subject | Leaf | pt_PT |
| dc.subject | Cultivars | pt_PT |
| dc.subject | Varieties | pt_PT |
| dc.title | Machine learning to identify olive-tree cultivars | pt_PT |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.citation.conferencePlace | Bragança | pt_PT |
| oaire.citation.title | 2nd International Conference on Optimization, Learning Algorithms and Applications, OL2A 2022 | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| person.familyName | Mendes | |
| person.familyName | Lima | |
| person.familyName | Rodrigues | |
| person.familyName | Leitão | |
| person.familyName | Pereira | |
| person.givenName | João | |
| person.givenName | José | |
| person.givenName | Nuno | |
| person.givenName | Paulo | |
| person.givenName | Ana I. | |
| person.identifier | 2726655 | |
| person.identifier | R-000-8GD | |
| person.identifier | A-8390-2011 | |
| person.identifier.ciencia-id | EA1F-844D-6BA9 | |
| person.identifier.ciencia-id | 6016-C902-86A9 | |
| person.identifier.ciencia-id | F41D-B424-5F78 | |
| person.identifier.ciencia-id | 8316-8F13-DA71 | |
| person.identifier.ciencia-id | 0716-B7C2-93E4 | |
| person.identifier.orcid | 0000-0003-0979-8314 | |
| person.identifier.orcid | 0000-0001-7902-1207 | |
| person.identifier.orcid | 0000-0002-9305-0976 | |
| person.identifier.orcid | 0000-0002-2151-7944 | |
| person.identifier.orcid | 0000-0003-3803-2043 | |
| person.identifier.rid | L-3370-2014 | |
| person.identifier.rid | F-3168-2010 | |
| person.identifier.scopus-author-id | 57225794972 | |
| person.identifier.scopus-author-id | 55851941311 | |
| person.identifier.scopus-author-id | 55258560600 | |
| person.identifier.scopus-author-id | 35584388900 | |
| person.identifier.scopus-author-id | 15071961600 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
| relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isAuthorOfPublication | 00739d63-995d-4b1f-97d0-03d24c7cf0fd | |
| relation.isAuthorOfPublication | 68d9eb25-ad4f-439b-aeb2-35e8708644cc | |
| relation.isAuthorOfPublication | e9981d62-2a2b-4fef-b75e-c2a14b0e7846 | |
| relation.isAuthorOfPublication.latestForDiscovery | 68d9eb25-ad4f-439b-aeb2-35e8708644cc | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication.latestForDiscovery | 6e01ddc8-6a82-4131-bca6-84789fa234bd |
