Repository logo
 
Publication

Sliding PCA fuzzy clustering algorithm

dc.contributor.authorSalgado, Paulo
dc.contributor.authorGonçalves, Lio
dc.contributor.authorIgrejas, Getúlio
dc.date.accessioned2014-10-28T11:12:10Z
dc.date.available2014-10-28T11:12:10Z
dc.date.issued2011
dc.description.abstractThis paper proposes a new robust approach to nonlinear clustering based on the Principal Component Analysis (PCA) approach. A robust c-means partition is derived by using the natural PCA noise-rejection mechanism and the nonlinearity captured by a sliding process of the clusters prototype. A non-linear extension of PCA has been developed for detecting the lower-dimensional representation of real world data sets. For these cases local linear approaches are used widely because of their computational simplicity and understandability. We will present a new method that joins (merges) the fuzzy clustering algorithm with a local sliding PCA analysis. With this strategy it is possible to identify the non-linear relations and obtain morphological information of the data. The Sliding PCA-Fuzzy cluster algorithm (SPCA-FCA) is a fuzzy clustering algorithm that estimates local principal component vectors as the vectors spanning prototypes of clusters, performed on the neighborhood of the center of cluster and normal approximations in order to estimate a tangent surface that characterizes the trend and curvature of the data points or contours region. Numerical experiments demonstrate that the proposed method is useful for capturing cluster cores by rejecting noise samples, and we can easily assess cluster validity by using cluster-crossing curves.por
dc.identifier.citationalgado, Paulo; Gonçalves, Lio; Igrejas, Getúlio (2011). Sliding PCA fuzzy clustering algorithm. In International Conference on Numerical Analysis and Applied Mathematics (ICNAAM). Halkidiki, (Greece). p.1992-1995por
dc.identifier.doi10.1063/1.3637005
dc.identifier.urihttp://hdl.handle.net/10198/11101
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherAIP Proceedingspor
dc.subjectPrincipal component Analysispor
dc.subjectFuzzy clusteringpor
dc.titleSliding PCA fuzzy clustering algorithmpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceHalkidiki, (Greece)por
oaire.citation.endPage1995por
oaire.citation.startPage1992por
oaire.citation.titleInternational Conference on Numerical Analysis and Applied Mathematics (ICNAAM)por
person.familyNameIgrejas
person.givenNameGetúlio
person.identifier.orcid0000-0002-6820-8858
person.identifier.ridM-8571-2013
person.identifier.scopus-author-id47761255900
rcaap.rightsrestrictedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublicationab4092ec-d1b1-4fe0-b65a-efba1310fd5a
relation.isAuthorOfPublication.latestForDiscoveryab4092ec-d1b1-4fe0-b65a-efba1310fd5a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Sliding PCA.pdf
Size:
438.66 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: