Publication
Automated preprocessing of olive leaf images for cultivar classification using YOLO11
| datacite.subject.fos | Ciências Agrárias::Agricultura, Silvicultura e Pescas | |
| datacite.subject.fos | Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | |
| datacite.subject.fos | Engenharia e Tecnologia::Engenharia Mecânica | |
| datacite.subject.sdg | 04:Educação de Qualidade | |
| datacite.subject.sdg | 02:Erradicar a Fome | |
| datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | |
| dc.contributor.author | Mendes, João | |
| dc.contributor.author | Lima, José | |
| dc.contributor.author | Rodrigues, Nuno | |
| dc.contributor.author | Pereira, Ana I. | |
| dc.date.accessioned | 2025-12-04T15:38:23Z | |
| dc.date.available | 2025-12-04T15:38:23Z | |
| dc.date.issued | 2026 | |
| dc.description.abstract | Olive cultivation is a pillar of Mediterranean agriculture, deeply rooted in both tradition and economic importance. This paper presents a novel two-phase methodology for the automated preprocessing of olive leaf images to facilitate accurate cultivar classification. Leveraging the state-of-the-art YOLO11 framework, two models (YOLO11n and YOLO11s) were employed for detection and segmentation tasks. A comprehensive dataset, combining in-situ captured images with publicly available data, was meticulously annotated using both manual and semi-automatic processes. The detection model identifies individual olive leaves, while the segmentation model isolates the leaves by replacing the background with a uniform white, thereby simulating laboratory conditions. Experimental results demonstrate that YOLO11n outperforms YOLO11s in terms of mean Average Precision and F1-score, confirming the feasibility of deploying the system on mobile devices for real-time, in-field classification. | eng |
| dc.description.sponsorship | This work was supported by national funds through FCT/MCTES (PIDDAC): CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI: 10.54499/UIDB/05757/2020); and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020). | |
| dc.identifier.citation | Mendes, João; Lima, José; Rodrigues, Nuno; Pereira, Ana I. (2026). Automated Preprocessing of Olive Leaf Images for Cultivar Classification Using YOLO11. In 5th International Conference OL2A. Cham: Springer Nature. p. 286–297. ISBN 9783032001368 | |
| dc.identifier.doi | 10.1007/978-3-032-00137-5_20 | |
| dc.identifier.isbn | 9783032001368 | |
| dc.identifier.isbn | 9783032001375 | |
| dc.identifier.issn | 1865-0929 | |
| dc.identifier.issn | 1865-0937 | |
| dc.identifier.uri | http://hdl.handle.net/10198/35171 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Springer Nature | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| dc.relation.ispartof | Communications in Computer and Information Science | |
| dc.relation.ispartof | Optimization, Learning Algorithms and Applications | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Olive Cultivation | |
| dc.subject | Leaf Detection | |
| dc.subject | Image Segmentation | |
| dc.subject | YOLO11 | |
| dc.subject | Smart Agriculture | |
| dc.title | Automated preprocessing of olive leaf images for cultivar classification using YOLO11 | eng |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
| oaire.citation.conferenceDate | 2025 | |
| oaire.citation.endPage | 297 | |
| oaire.citation.startPage | 286 | |
| oaire.citation.title | Optimization, Learning Algorithms and Applications: 5th International Conference - Part 1 | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Mendes | |
| person.familyName | Lima | |
| person.familyName | Rodrigues | |
| person.familyName | Pereira | |
| person.givenName | João | |
| person.givenName | José | |
| person.givenName | Nuno | |
| person.givenName | Ana I. | |
| person.identifier | 2726655 | |
| person.identifier | R-000-8GD | |
| person.identifier.ciencia-id | EA1F-844D-6BA9 | |
| person.identifier.ciencia-id | 6016-C902-86A9 | |
| person.identifier.ciencia-id | F41D-B424-5F78 | |
| person.identifier.ciencia-id | 0716-B7C2-93E4 | |
| person.identifier.orcid | 0000-0003-0979-8314 | |
| person.identifier.orcid | 0000-0001-7902-1207 | |
| person.identifier.orcid | 0000-0002-9305-0976 | |
| person.identifier.orcid | 0000-0003-3803-2043 | |
| person.identifier.rid | L-3370-2014 | |
| person.identifier.rid | F-3168-2010 | |
| person.identifier.scopus-author-id | 57225794972 | |
| person.identifier.scopus-author-id | 55851941311 | |
| person.identifier.scopus-author-id | 55258560600 | |
| person.identifier.scopus-author-id | 15071961600 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| relation.isAuthorOfPublication | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
| relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isAuthorOfPublication | 00739d63-995d-4b1f-97d0-03d24c7cf0fd | |
| relation.isAuthorOfPublication | e9981d62-2a2b-4fef-b75e-c2a14b0e7846 | |
| relation.isAuthorOfPublication.latestForDiscovery | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
| relation.isProjectOfPublication.latestForDiscovery | 6e01ddc8-6a82-4131-bca6-84789fa234bd |
