Repository logo
 
Publication

Automated preprocessing of olive leaf images for cultivar classification using YOLO11

datacite.subject.fosCiências Agrárias::Agricultura, Silvicultura e Pescas
datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.fosEngenharia e Tecnologia::Engenharia Mecânica
datacite.subject.sdg04:Educação de Qualidade
datacite.subject.sdg02:Erradicar a Fome
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorMendes, João
dc.contributor.authorLima, José
dc.contributor.authorRodrigues, Nuno
dc.contributor.authorPereira, Ana I.
dc.date.accessioned2025-12-04T15:38:23Z
dc.date.available2025-12-04T15:38:23Z
dc.date.issued2026
dc.description.abstractOlive cultivation is a pillar of Mediterranean agriculture, deeply rooted in both tradition and economic importance. This paper presents a novel two-phase methodology for the automated preprocessing of olive leaf images to facilitate accurate cultivar classification. Leveraging the state-of-the-art YOLO11 framework, two models (YOLO11n and YOLO11s) were employed for detection and segmentation tasks. A comprehensive dataset, combining in-situ captured images with publicly available data, was meticulously annotated using both manual and semi-automatic processes. The detection model identifies individual olive leaves, while the segmentation model isolates the leaves by replacing the background with a uniform white, thereby simulating laboratory conditions. Experimental results demonstrate that YOLO11n outperforms YOLO11s in terms of mean Average Precision and F1-score, confirming the feasibility of deploying the system on mobile devices for real-time, in-field classification.eng
dc.description.sponsorshipThis work was supported by national funds through FCT/MCTES (PIDDAC): CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI: 10.54499/UIDB/05757/2020); and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020).
dc.identifier.citationMendes, João; Lima, José; Rodrigues, Nuno; Pereira, Ana I. (2026). Automated Preprocessing of Olive Leaf Images for Cultivar Classification Using YOLO11. In 5th International Conference OL2A. Cham: Springer Nature. p. 286–297. ISBN 9783032001368
dc.identifier.doi10.1007/978-3-032-00137-5_20
dc.identifier.isbn9783032001368
dc.identifier.isbn9783032001375
dc.identifier.issn1865-0929
dc.identifier.issn1865-0937
dc.identifier.urihttp://hdl.handle.net/10198/35171
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Nature
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.relation.ispartofCommunications in Computer and Information Science
dc.relation.ispartofOptimization, Learning Algorithms and Applications
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectOlive Cultivation
dc.subjectLeaf Detection
dc.subjectImage Segmentation
dc.subjectYOLO11
dc.subjectSmart Agriculture
dc.titleAutomated preprocessing of olive leaf images for cultivar classification using YOLO11eng
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.citation.conferenceDate2025
oaire.citation.endPage297
oaire.citation.startPage286
oaire.citation.titleOptimization, Learning Algorithms and Applications: 5th International Conference - Part 1
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameMendes
person.familyNameLima
person.familyNameRodrigues
person.familyNamePereira
person.givenNameJoão
person.givenNameJosé
person.givenNameNuno
person.givenNameAna I.
person.identifier2726655
person.identifierR-000-8GD
person.identifier.ciencia-idEA1F-844D-6BA9
person.identifier.ciencia-id6016-C902-86A9
person.identifier.ciencia-idF41D-B424-5F78
person.identifier.ciencia-id0716-B7C2-93E4
person.identifier.orcid0000-0003-0979-8314
person.identifier.orcid0000-0001-7902-1207
person.identifier.orcid0000-0002-9305-0976
person.identifier.orcid0000-0003-3803-2043
person.identifier.ridL-3370-2014
person.identifier.ridF-3168-2010
person.identifier.scopus-author-id57225794972
person.identifier.scopus-author-id55851941311
person.identifier.scopus-author-id55258560600
person.identifier.scopus-author-id15071961600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationb5c9de22-cf9e-47b8-b7a4-26e08fb12b28
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublication00739d63-995d-4b1f-97d0-03d24c7cf0fd
relation.isAuthorOfPublicatione9981d62-2a2b-4fef-b75e-c2a14b0e7846
relation.isAuthorOfPublication.latestForDiscoveryb5c9de22-cf9e-47b8-b7a4-26e08fb12b28
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Automated Preprocessing.pdf
Size:
3.28 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: