| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 7.41 MB | Adobe PDF |
Authors
Abstract(s)
Esse trabalho reporta o projeto de um coletor solar flexível e de baixo custo, em filme
de poliuretano (PU), e a sua análise térmica. Por ser modular, flexível e com materiais
de baixo custo para facilitar o transporte, ampliar a variedade de superfícies em que
pode ser instalado e reduzir os gastos de aquisição, o coletor pode ser utilizado em
eventos de curta duração como festivais e acampamentos ou até mesmo em comunidades
carentes. O modelo do coletor é composto por três partes: cobertura
transparente, camada absorvedora e camada para isolamento. A camada absorvedora
possui cinco canais para circulação de água que comportam o volume de água
de 18 litros. A circulação da água no sistema ocorre pelo efeito termossifão. O modelo
do coletor solar foi feito no software SolidWorks 2019, os projetos da bancada foram
feitos no software Autodesk Inventor 2020 e as simulações no software
ANSYS/Fluent™ 19.3. Também, projetou-se e construiu-se uma bancada para a realização
de testes reais de operação do coletor, inserido num sistema de aquecimento
solar de água, composto, ainda, por reservatório térmico, tubagens e conexões hidráulicas.
O total de 20 desenhos cotados compõem os projetos do coletor solar e da
bancada. O sistema foi simulado para as condições de inverno da cidade de Bragança,
Portugal, por ser a estação do ano mais extrema. Durante a primeira hora de operação,
o coletor elevou a temperatura da água na saída em 6 K e gerou a potência
calorífica de 32,35 W. Os estudos apresentados mostram a potencialidade do coletor,
atingindo a eficiência de 59,73 %.
This work reports the design of a flexible and low-cost solar collector in polyurethane (PU) film, and its thermal analysis. For being modular, flexible and with low-cost materials to facilitate transportation, expand the variety of surfaces on which it can be installed and reduce acquisition costs, the collector can be used for short-term events such as festivals and camps or even in needy communities. The collector model consists of three parts: transparent layer, absorber layer and layer for insulation. The absorber layer has five channels for water circulation that hold the water volume of 18 liters. The circulation of water in the system occurs by the thermosiphon effect. The solar collector model was made in the SolidWorks 2019 software, the bench designs were made using Autodesk Inventor 2020 software and simulations in ANSYS/Fluent™ 19.3 software. Also, a bench was designed and built to carry out real tests of the collector's operation, inserted in a solar water heating system, composed, still, by thermal reservoir, pipes and hydraulic connections. A total of 20 dimensioned drawings make up the solar collector and bench designs. The system was simulated for the winter conditions in the city of Bragança, Portugal, for being season more critical. During the first hour of operation, the collector raised the water temperature at the outlet by 6 K and generated the heat power of de 37,9. The studies presented show the potential of the collector, reaching an efficiency of 68.76%.
This work reports the design of a flexible and low-cost solar collector in polyurethane (PU) film, and its thermal analysis. For being modular, flexible and with low-cost materials to facilitate transportation, expand the variety of surfaces on which it can be installed and reduce acquisition costs, the collector can be used for short-term events such as festivals and camps or even in needy communities. The collector model consists of three parts: transparent layer, absorber layer and layer for insulation. The absorber layer has five channels for water circulation that hold the water volume of 18 liters. The circulation of water in the system occurs by the thermosiphon effect. The solar collector model was made in the SolidWorks 2019 software, the bench designs were made using Autodesk Inventor 2020 software and simulations in ANSYS/Fluent™ 19.3 software. Also, a bench was designed and built to carry out real tests of the collector's operation, inserted in a solar water heating system, composed, still, by thermal reservoir, pipes and hydraulic connections. A total of 20 dimensioned drawings make up the solar collector and bench designs. The system was simulated for the winter conditions in the city of Bragança, Portugal, for being season more critical. During the first hour of operation, the collector raised the water temperature at the outlet by 6 K and generated the heat power of de 37,9. The studies presented show the potential of the collector, reaching an efficiency of 68.76%.
Description
Mestrado de dupla diplomação com o Instituto Federal do Rio Grande do Sul
Keywords
Sistema de aquecimento de água Termossifão Energia solar
