Repository logo
 
Publication

DyPrune: dynamic pruning rates for neural networks

dc.contributor.authorJonker, Richard A.A.
dc.contributor.authorPoudel, Roshan
dc.contributor.authorFajarda, Olga
dc.contributor.authorOliveira, José Luís
dc.contributor.authorLopes, Rui Pedro
dc.contributor.authorMatos, Sérgio
dc.date.accessioned2024-03-11T09:20:33Z
dc.date.available2024-03-11T09:20:33Z
dc.date.issued2023
dc.description.abstractNeural networks have achieved remarkable success in various applications such as image classification, speech recognition, and natural language processing. However, the growing size of neural networks poses significant challenges in terms of memory usage, computational cost, and deployment on resource-constrained devices. Pruning is a popular technique to reduce the complexity of neural networks by removing unnecessary connections, neurons, or filters. In this paper, we present novel pruning algorithms that can reduce the number of parameters in neural networks by up to 98% without sacrificing accuracy. This is done by scaling the pruning rate of the models to the size of the model and scheduling the pruning to execute throughout the training of the model. Code related to this work is openly available.pt_PT
dc.description.sponsorshipThis work was supported by national funds through the Foundation for Science and Technology (FCT) in the context of the project DSAIPA/AI/0088/2020 and project UIDB/00127/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationJonker, Richard A.A.; Poudel, Roshan; Fajarda, Olga; Oliveira, José Luís; Lopes, Rui Pedro; Matos, Sérgio (2023). DyPrune: dynamic pruning rates for neural networks. In Progress in Artificial Intelligence (EPIA). Cham: Springer. 14115. p. 146-157. ISBN 978-3-031-49007-1pt_PT
dc.identifier.doi10.1007/978-3-031-49008-8_12pt_PT
dc.identifier.isbn978-3-031-49007-1
dc.identifier.urihttp://hdl.handle.net/10198/29602
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.relationInstitute of Electronics and Informatics Engineering of Aveiro
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMachine learningpt_PT
dc.subjectNeural networkspt_PT
dc.subjectPruningpt_PT
dc.titleDyPrune: dynamic pruning rates for neural networkspt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleInstitute of Electronics and Informatics Engineering of Aveiro
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/FCT_DSAIPA_2020/DSAIPA%2FAI%2F0088%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00127%2F2020/PT
oaire.citation.endPage157pt_PT
oaire.citation.startPage146pt_PT
oaire.citation.titleProgress in Artificial Intelligence (EPIA)pt_PT
oaire.citation.volume14115pt_PT
oaire.fundingStreamFCT_DSAIPA_2020
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLopes
person.givenNameRui Pedro
person.identifier.ciencia-id8E14-54E4-4DB5
person.identifier.orcid0000-0002-9170-5078
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicatione1e64423-0ec8-46ee-be96-33205c7c98a9
relation.isAuthorOfPublication.latestForDiscoverye1e64423-0ec8-46ee-be96-33205c7c98a9
relation.isProjectOfPublicationb95c01b9-09de-4866-bb86-ac938ce3e0d3
relation.isProjectOfPublicationaf5198a3-6377-4245-a289-6656629b8bfa
relation.isProjectOfPublication.latestForDiscoveryb95c01b9-09de-4866-bb86-ac938ce3e0d3

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DyPrune Dynamic Pruning Rates for Neural Networks.pdf
Size:
414.73 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: