Repository logo
 
Publication

Recommendation system using reinforcement learning for what-If simulation in digital twin

dc.contributor.authorPires, Flávia
dc.contributor.authorAhmad, Bilal
dc.contributor.authorMoreira, António Paulo G. M.
dc.contributor.authorLeitão, Paulo
dc.date.accessioned2023-02-16T16:00:21Z
dc.date.available2023-02-16T16:00:21Z
dc.date.issued2021
dc.description.abstractThe research about the digital twin concept is growing worldwide, especially in the industrial sector, due to the increasing digitisation level associated to Industry 4.0. The application of the digital twin concept improves performance of a system by implementing monitoring, diagnosis, optimisation, and decision support actions. In particular, the decision-making process is very time consuming since the decision-maker is presented with hundreds of different scenarios that can be simulated and assessed in a what-if perspective. Bearing this in mind, this paper proposes to integrate a digital twin-based what-if simulation with a recommendation system to improve the decision-making cycle. The recommendation system is based on a reinforcement learning technique and takes user knowledge of the system into consideration and trust in the system recommendation. The applicability of the proposed approach is presented in an assembly line case study for recommending the best configurations for the system operation, in terms of the optimal number of AGVs (Autonomous Guided Vehicles) in various scenarios. The achieved results show its successful application and highlight the benefits of using AI-based recommendation systems for what-if simulation in digital twin systems.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationPires, Flavia; Ahmad, Bilal; Moreira, Antonio Paulo; Leitão, Paulo (2021). Recommendation system using reinforcement learning for what-If simulation in digital twin. In 19th International Conference on Industrial Informatics (INDIN). Palma de Mallorca, Spain. p. 1 - 6pt_PT
dc.identifier.doi10.1109/INDIN45523.2021.9557372pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/27010
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAn Intelligent Decision Support Approach for Industrial Digital Twin
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectDigital twinpt_PT
dc.subjectWhat-if simulationpt_PT
dc.subjectRecommendation systemspt_PT
dc.subjectReinforcement learningpt_PT
dc.titleRecommendation system using reinforcement learning for what-If simulation in digital twinpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAn Intelligent Decision Support Approach for Industrial Digital Twin
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/POR_NORTE/SFRH%2FBD%2F143243%2F2019/PT
oaire.citation.conferencePlacePalma de Mallorca, Spainpt_PT
oaire.citation.endPage6pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title19th International Conference on Industrial Informatics (INDIN)pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamPOR_NORTE
person.familyNamePires
person.familyNameLeitão
person.givenNameFlávia
person.givenNamePaulo
person.identifierhttps://scholar.google.pt/citations?user=an9quSsAAAAJ&hl=pt-PT
person.identifierA-8390-2011
person.identifier.ciencia-idA119-72AB-6255
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.orcid0000-0001-7899-3020
person.identifier.orcid0000-0002-2151-7944
person.identifier.scopus-author-id57200412919
person.identifier.scopus-author-id35584388900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication3ac8f73e-ecb2-44b6-9c6f-1ee99474e00f
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication.latestForDiscovery3ac8f73e-ecb2-44b6-9c6f-1ee99474e00f
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicatione2e5e121-f56c-481a-980a-dcb4d852e27b
relation.isProjectOfPublication.latestForDiscoverye2e5e121-f56c-481a-980a-dcb4d852e27b

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Recommendation_System_using_Reinforcement_Learning_for_What-If_Simulation_in_Digital_Twin.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: