Publication
Using machine learning approaches to localization in an embedded system on RobotAtFactory 4.0 competition: a case study
dc.contributor.author | Klein, Luan C. | |
dc.contributor.author | Braun, João | |
dc.contributor.author | Martins, Felipe N. | |
dc.contributor.author | Wörtche, Heinrich | |
dc.contributor.author | Oliveira, Andre Schneider | |
dc.contributor.author | Mendes, João | |
dc.contributor.author | Pinto, Vítor H. | |
dc.contributor.author | Costa, Paulo Gomes da | |
dc.date.accessioned | 2013-01-15T11:03:24Z | |
dc.date.available | 2013-01-15T11:03:24Z | |
dc.date.issued | 2023 | |
dc.description.abstract | The use of machine learning in embedded systems is an interesting topic, especially with the growth in popularity of the Internet of Things (IoT). The capacity of a system, such as a robot, to self-localize, is a fundamental skill for its navigation and decision-making processes. This work focuses on the feasibility of using machine learning in a Raspberry Pi 4 Model B, solving the localization problem using images and fiducial markers (ArUco markers) in the context of the RobotAtFactory 4.0 competition. The approaches were validated using a realistically simulated scenario. Three algorithms were tested, and all were shown to be a good solution for a limited amount of data. Results also show that when the amount of data grows, only Multi-Layer Perception (MLP) is feasible for the embedded application due to the required training time and the resulting size of the model. | por |
dc.description.sponsorship | This work has been supported by FCT - Fundac¸ ˜ao para a Ciˆencia e Tecnologia within the Project Scope: UIDB/05757/2020 and UIDP/05757/2020 and SusTEC (LA/P/0007/2021). The project that gave rise to these results received the support of a fellowship from ”la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI20/11780028. Jo˜ao Braun is PhD student at Faculty of Engineering of University of Porto. | |
dc.identifier.citation | Klein, Luan C.; Braun, João; Martins, Felipe N.; Wörtche, Heinrich; Oliveira, Andre Schneider; Mendes, João; Pinto, Vítor H.; Costa, Paulo (2023). Using machine learning approaches to localization in an embedded system on RobotAtFactory 4.0 competition: a case study. In IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). Tomar. p. p. 69-74. ISBN 979-835030121-2 | por |
dc.identifier.doi | 10.1109/ICARSC58346.2023.10129619 | |
dc.identifier.eissn | 2573-9387 | |
dc.identifier.isbn | 979-835030121-2 | |
dc.identifier.uri | http://hdl.handle.net/10198/7916 | |
dc.language.iso | eng | por |
dc.peerreviewed | yes | por |
dc.publisher | IEEE | por |
dc.subject | Indoor Localization | por |
dc.subject | Machine Learning | por |
dc.subject | RobotAtFactory 4.0 | por |
dc.subject | Robotics Competitions | |
dc.subject | Embedded systems | |
dc.title | Using machine learning approaches to localization in an embedded system on RobotAtFactory 4.0 competition: a case study | por |
dc.type | conference paper | |
dspace.entity.type | Publication | |
oaire.citation.title | IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) | por |
person.familyName | Braun | |
person.familyName | Mendes | |
person.givenName | João A. | |
person.givenName | João | |
person.identifier | 2726655 | |
person.identifier.ciencia-id | BF13-D66B-7D08 | |
person.identifier.ciencia-id | EA1F-844D-6BA9 | |
person.identifier.orcid | 0000-0003-0276-4314 | |
person.identifier.orcid | 0000-0003-0979-8314 | |
person.identifier.scopus-author-id | 57211244317 | |
person.identifier.scopus-author-id | 57225794972 | |
rcaap.rights | openAccess | por |
rcaap.type | conferenceObject | por |
relation.isAuthorOfPublication | b8dfcbd7-1b89-48f3-afee-3e7d3f3c90d4 | |
relation.isAuthorOfPublication | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
relation.isAuthorOfPublication.latestForDiscovery | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: