Repository logo
 
Publication

Alzheimer's Early Prediction with Electroencephalogram

dc.contributor.authorRodrigues, Pedro Miguel
dc.contributor.authorTeixeira, João Paulo
dc.contributor.authorGarrett, Carolina
dc.contributor.authorAlves, Dílio
dc.contributor.authorFreitas, Diamantino Silva
dc.date.accessioned2018-04-09T14:16:51Z
dc.date.available2018-04-09T14:16:51Z
dc.date.issued2016
dc.description.abstractAlzheimer’s disease (AD) is currently an incurable illness that causes dementia and patient’s condition is progressively worse and it represents one of the greatest public health challenges worldwide. The main objective of this work was to develop a classification methodology for EEG signals to improve discrimination amongst patients at varying stages of the illness, Mild Cognitive Impairment (MCI) patients and non-patients either in order to obtain a more reliable methodology to identify AD in early stages. For this purpose, a surrogate decision tree classifier was used with 2 different ways of cross-validation (leave-one-out-crossvalidation and 10-fold-cross validation). The EEG studied features were the values of maxima (NMax) and minima (NMin), the zero-crossing (Zcr) rate, the mean derivative value at a point (Mdif), the Relative Power (RP) in each of the conventional bands and finally the spectral ratios (r). The best classification was obtained with vectors of 10 features as classifier entries in a leaveone- out-cross validation process, reaching 0.934 AUC, a sensitivity of 86.19%, a specificity of 99.35%, an accuracy of 94.88%, with a low out-of-sample classification error of 6.98% which indicates that the classifier generalizes fairly well.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRodrigues, Pedro Miguel; Teixeira, João Paulo; Garrett, Carolina; Alves, Dílio; Freitas, Diamantino (2016). Alzheimer's Early Prediction with Electroencephalogram. In International Conference on Enterprise Information Systems/International Conference on Project Management/International Conference on Health and Social Care Information Systems and Technologies, Centeris/Projman - HCIST 2016. Porto: Elsevier. p. 865-871. ISSN 1877-0509pt_PT
dc.identifier.doi10.1016/j.procs.2016.09.236pt_PT
dc.identifier.issn1877-0509
dc.identifier.urihttp://hdl.handle.net/10198/16797
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAlzheimer’s diaseasept_PT
dc.subjectEarly stagespt_PT
dc.subjectElectroencephalogram signalpt_PT
dc.subjectSurrogate decision tree classifierpt_PT
dc.subjectFeaturespt_PT
dc.titleAlzheimer's Early Prediction with Electroencephalogrampt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlacePortopt_PT
oaire.citation.endPage871pt_PT
oaire.citation.startPage865pt_PT
oaire.citation.titleProcedia Computer Science e International Conference on Enterprise Information Systems/International Conference on Project Management/International Conference on Health and Social Care Information Systems and Technologies, Centeris/Projman - HCIST 2016pt_PT
oaire.citation.volume100pt_PT
person.familyNameTeixeira
person.givenNameJoão Paulo
person.identifier663194
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57069567500
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery33f4af65-7ddf-46f0-8b44-a7470a8ba2bf

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Hcist2016_DA_publicado.pdf
Size:
267.17 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: