Repository logo
 
Publication

Lacsogram: a new EEG tool to diagnose Alzheimer's disease

dc.contributor.authorRodrigues, Pedro M.
dc.contributor.authorBispo, Bruno
dc.contributor.authorGarrett, Carolina
dc.contributor.authorAlves, Dílio
dc.contributor.authorTeixeira, João Paulo
dc.contributor.authorFreitas, Diamantino Silva
dc.date.accessioned2023-02-09T16:41:04Z
dc.date.available2023-02-09T16:41:04Z
dc.date.issued2021
dc.description.abstractThis work proposes the application of a new electroencephalogram (EEG) signal processing tool - the lacsogram - to characterize the Alzheimer’s disease (AD) activity and to assist on its diagnosis at different stages: Mild Cognitive Impairment (MCI), Mild and Moderate AD (ADM) and Advanced AD (ADA). Statistical analyzes are performed to lacstral distances between conventional EEG subbands to find measures capable of discriminating AD in all stages and characterizing the AD activity in each electrode. Cepstral distances are used for comparison. Comparing all AD stages and Controls (C), the most important significances are the lacstral distances between subbands and (p=0.0014<0.05). The topographic maps show significant differences in parietal, temporal and frontal regions as AD progresses. Machine learning models with a leave-one-out cross-validation process are applied to lacstral/cepstral distances to develop an automatic method for diagnosing AD. The following classification accuracies are obtained with an artificial neural network: 95.55% for All vs All, 98.06% for C vs MCI, 95.99% for C vs ADM, 93.85% for MCI vs ADM-ADA. In C vs MCI, C vs ADM and MCI vs ADM-ADA, the proposed method outperforms the stateof- art methods by 5%, 1%, and 2%, respectively. In All vs All, it outperforms the state-of-art EEG and non-EEG methods by 6% and 2%, respectively. These results indicate that the proposed method represents an improvement in diagnosing AD.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRodrigues, Pedro M.; Bispo, Bruno C.; Garrett, Carolina ; Alves, Dilio; Teixeira, Joao Paulo; Freitas, Diamantino (2021). Lacsogram: a new EEG tool to diagnose Alzheimer's disease. IEEE Journal of Biomedical and Health Informatics. 25:9, p. 3384 3395pt_PT
dc.identifier.doi10.1109/JBHI.2021.3069789pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/26865
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEE Journal of Biomedical and Health Informaticspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAlzheimer’s diseasept_PT
dc.subjectMild-cognitive impairmentpt_PT
dc.subjectDiagnosept_PT
dc.subjectArtificial neural networkspt_PT
dc.subjectCepstrumpt_PT
dc.subjectLacsogrampt_PT
dc.titleLacsogram: a new EEG tool to diagnose Alzheimer's diseasept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage3395pt_PT
oaire.citation.issue9pt_PT
oaire.citation.startPage3384pt_PT
oaire.citation.titleIEEE Journal of Biomedical and Health Informaticspt_PT
oaire.citation.volume25pt_PT
person.familyNameRodrigues
person.familyNameTeixeira
person.givenNamePedro M.
person.givenNameJoão Paulo
person.identifier663194
person.identifier.ciencia-idC919-D413-5E83
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0009-0002-4920-7398
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id56108282100
person.identifier.scopus-author-id57069567500
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication55f77b39-347e-4ad5-97c6-def43d656014
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery55f77b39-347e-4ad5-97c6-def43d656014

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
JBHI_final_Paper.pdf
Size:
4.04 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: