Publication
Schizophrenia diagnosis support with spectral and cepstral features of speech
| datacite.subject.fos | Ciências Médicas::Ciências da Saúde | |
| datacite.subject.fos | Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática | |
| datacite.subject.sdg | 04:Educação de Qualidade | |
| datacite.subject.sdg | 03:Saúde de Qualidade | |
| datacite.subject.sdg | 09:Indústria, Inovação e Infraestruturas | |
| dc.contributor.author | Teixeira, Felipe | |
| dc.contributor.author | Mendes, João | |
| dc.contributor.author | Soares,Salviano F. P. | |
| dc.contributor.author | Abreu, J. L. Pio | |
| dc.contributor.author | Teixeira, João Paulo | |
| dc.date.accessioned | 2025-12-12T11:56:38Z | |
| dc.date.available | 2025-12-12T11:56:38Z | |
| dc.date.issued | 2026 | |
| dc.description.abstract | Schizophrenia is a severe mental illness affecting over 20 million people worldwide, significantly impairing quality of life and daily functioning. Current diagnostic methods rely heavily on subjective assessments and interactions between doctors and patients, leaving room for potential misdiagnoses. Recent advancements in technology have introduced non-invasive, fast, and user-friendly approaches, such as machine learning, to support psychiatric diagnosis. In this study, spectral features extracted from speech samples of individuals with and without schizophrenia were analyzed. Using an ensemble bagged tree model, we achieved an accuracy of 96.3%, a sensitivity of 94.6%, and an F1-score of 95.4%. These results highlight the potential of speech-based machine learning models as effective tools for aiding schizophrenia diagnosis. | eng |
| dc.description.sponsorship | This work was partially funded by FCT - Fundação para a Ciência e a Tecnologia (FCT) I.P., through national funds, within the scope of the UIDB/00127/2020 project (IEETA/UA, http://www.ieeta.pt/) The authors are grateful for the European Regional Development Fund (ERDF) via the Regional Operational Program North 2020; Foundation for Science and Technology (FCT, Portugal) support from national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). The authors are grateful for the IN_GENIOS_DUERO_DOURO, Cooperación para la puesta en valor de la cultura industrial del Duero-Douro a través del turismo, 0247_IN_GENIOS_DUERO_DOURO_2_E, financed by FEDER, through the POCTEP. The authors are also grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC): UNIAG, UIDB/04752/2020 (DOI 10.54499/UIDB/04752/2020) and UIDP/04752/2020 (DOI 10.54499/UIDP/04752/2020). The authors would also like to thank Adriana Santos for her collaboration throughout the work. | |
| dc.identifier.citation | Teixeira, Felipe; Mendes, João; Soares,Salviano F. P.; Abreu, J. L. Pio; Teixeira, João Paulo (2026). Schizophrenia diagnosis support with spectral and cepstral features of speech. In Optimization, Learning Algorithms and Applications: 5th International Conference - Part 1. Cham: Springer Nature. p. 175–186. ISBN 9783032001368 | |
| dc.identifier.doi | 10.1007/978-3-032-00137-5_12 | |
| dc.identifier.isbn | 9783032001368 | |
| dc.identifier.isbn | 9783032001375 | |
| dc.identifier.issn | 1865-0929 | |
| dc.identifier.issn | 1865-0937 | |
| dc.identifier.uri | http://hdl.handle.net/10198/35211 | |
| dc.language.iso | eng | |
| dc.peerreviewed | yes | |
| dc.publisher | Springer Nature | |
| dc.relation | Institute of Electronics and Informatics Engineering of Aveiro | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | NEXTGENmOCp: Next generation of a microfluidic Organ-on-a-Chip platform (mOCp) to assess and diagnosis therapeutic effects of innovative nanomedicines | |
| dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| dc.relation | Applied Management Research Unit | |
| dc.relation | Applied Management Research Unit | |
| dc.relation.ispartof | Communications in Computer and Information Science | |
| dc.relation.ispartof | Optimization, Learning Algorithms and Applications | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Schizophrenia | |
| dc.subject | Speech features | |
| dc.subject | Machine Learning | |
| dc.subject | Ensemble bagged tree model | |
| dc.title | Schizophrenia diagnosis support with spectral and cepstral features of speech | eng |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Institute of Electronics and Informatics Engineering of Aveiro | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | NEXTGENmOCp: Next generation of a microfluidic Organ-on-a-Chip platform (mOCp) to assess and diagnosis therapeutic effects of innovative nanomedicines | |
| oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| oaire.awardTitle | Applied Management Research Unit | |
| oaire.awardTitle | Applied Management Research Unit | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00127%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/CEEC IND4ed/2021.00027.CEECIND%2FCP1664%2FCT0007/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04752%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04752%2F2020/PT | |
| oaire.citation.conferenceDate | 2026 | |
| oaire.citation.endPage | 186 | |
| oaire.citation.startPage | 175 | |
| oaire.citation.title | Optimization, Learning Algorithms and Applications: 5th International Conference - Part 1 | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | CEEC IND4ed | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.familyName | Teixeira | |
| person.familyName | Mendes | |
| person.familyName | Teixeira | |
| person.givenName | Felipe | |
| person.givenName | João | |
| person.givenName | João Paulo | |
| person.identifier | 2726655 | |
| person.identifier | 663194 | |
| person.identifier.ciencia-id | 0E17-62FB-AA17 | |
| person.identifier.ciencia-id | EA1F-844D-6BA9 | |
| person.identifier.ciencia-id | 4F15-B322-59B4 | |
| person.identifier.orcid | 0000-0003-0979-8314 | |
| person.identifier.orcid | 0000-0002-6679-5702 | |
| person.identifier.rid | N-6576-2013 | |
| person.identifier.scopus-author-id | 57225794972 | |
| person.identifier.scopus-author-id | 57069567500 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| relation.isAuthorOfPublication | 764c5209-b9ab-479e-b5be-59fbe07c784b | |
| relation.isAuthorOfPublication | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
| relation.isAuthorOfPublication | 33f4af65-7ddf-46f0-8b44-a7470a8ba2bf | |
| relation.isAuthorOfPublication.latestForDiscovery | b5c9de22-cf9e-47b8-b7a4-26e08fb12b28 | |
| relation.isProjectOfPublication | af5198a3-6377-4245-a289-6656629b8bfa | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication | 4669ae00-038b-4dc0-9d76-8cf5f4c11de2 | |
| relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
| relation.isProjectOfPublication | db81737a-fcb8-4cd9-b025-f7465790c52b | |
| relation.isProjectOfPublication | fddb1487-0635-4996-8ea1-acac8476ca6b | |
| relation.isProjectOfPublication.latestForDiscovery | af5198a3-6377-4245-a289-6656629b8bfa |
