Repository logo
 
Publication

VPD-based models of dead fine fuel moisture provide best estimates in a global dataset

dc.contributor.authorRodrigues, Marcos
dc.contributor.authorDios, Víctor Resco de
dc.contributor.authorSil, Ângelo Filipe
dc.contributor.authorCunill Camprubí, Àngel
dc.contributor.authorFernandes, Paulo M.
dc.date.accessioned2024-01-24T17:31:51Z
dc.date.available2024-01-24T17:31:51Z
dc.date.issued2024
dc.description.abstractDead fine fuel moisture content (FM) is one of the most important determinants of fire behavior. Fire scientists have attempted to effectively estimate FM for nearly a century, but we are still lacking broad scale evaluations of the different approaches for prediction. Here we tackle this problem by taking advantage or a recently compiled global fire behavior database (BONFIRE) gathering 1603 records of 1h (i.e., <6 mm diameter or thickness) dead fuel moisture content from measurements before experimental fires. We compared the results of models routinely used by different agencies worldwide, empirical models, semi-mechanistic models and also non-linear and machine learning approaches based on either temperature and relative humidity or vapor pressure deficit (VPD). A semi-mechanistic model based on VPD showed the best performance across all FM ranges and a historical model developed in Australia (MK5) was additionally recommended for low fuel moisture estimations. We also observed significant differences in FM dynamics between vegetation types with FM in grasslands more responsive to changes in atmospheric dryness than woody ecosystems. The addition of computational complexity through machine learning is not recommended since the gain in model fit is small relative to the increase in complexity. Future research efforts should concentrate on predictions at low FM (<10 %) as this is the range most significant for fire behavior and where the poorest model performance was observed. Model predictions are available from https://hcfm.shinyapps.io/shinyfmd/.pt_PT
dc.description.sponsorshipThis work was supported by the Portuguese Foundation for Science and Technology (projects UIDB/04033/2020 and PTDC/AAG-MAA/ 2656/2014), the Spanish MICINN (RTI2018-094691-B-C31, PID2020- 116556RA-I00) and EU H2020 (grant agreements 101003890-FirEUrisk, and 101037419-FireRES).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRodrigues, Marcos; Dios, Víctor Resco de; Sil, Ângelo Filipe; Cunill Camprubí, Àngel; Fernandes, Paulo M. (2024). VPD-based models of dead fine fuel moisture provide best estimates in a global dataset. Agricultural and Forest Meteorology. ISSN 0168-1923. 346, p. 1-10pt_PT
dc.identifier.doi10.1016/j.agrformet.2023.109868pt_PT
dc.identifier.issn0168-1923
dc.identifier.urihttp://hdl.handle.net/10198/29370
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationCentre for the Research and Technology of Agro-Environmental and Biological Sciences
dc.relationGlobal-scale analysis and modelling of fire behaviour potential
dc.relationFIREURISK - DEVELOPING A HOLISTIC, RISK-WISE STRATEGY FOR EUROPEAN WILDFIRE MANAGEMENT
dc.relationInnovative technologies and socio-ecological-economic solutions for fire resilient territories in Europe.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectDead fine fuel moisture contentpt_PT
dc.subjectModelspt_PT
dc.subjectVapor pressure deficitpt_PT
dc.subjectVegetation typept_PT
dc.titleVPD-based models of dead fine fuel moisture provide best estimates in a global datasetpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentre for the Research and Technology of Agro-Environmental and Biological Sciences
oaire.awardTitleGlobal-scale analysis and modelling of fire behaviour potential
oaire.awardTitleFIREURISK - DEVELOPING A HOLISTIC, RISK-WISE STRATEGY FOR EUROPEAN WILDFIRE MANAGEMENT
oaire.awardTitleInnovative technologies and socio-ecological-economic solutions for fire resilient territories in Europe.
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04033%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/Projetos de Investigação Científica e Desenvolvimento Tecnológico - 2014 (P2020)/PTDC%2FAAG-MAA%2F2656%2F2014/PT
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/101003890/EU
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/101037419/EU
oaire.citation.endPage10pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleAgricultural and Forest Meteorologypt_PT
oaire.citation.volume346pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamProjetos de Investigação Científica e Desenvolvimento Tecnológico - 2014 (P2020)
oaire.fundingStreamH2020
oaire.fundingStreamH2020
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameEuropean Commission
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isProjectOfPublicationac4fb709-719a-450b-8c96-17592d46f5e9
relation.isProjectOfPublication8f5a7fc9-6239-4896-b1b6-86ad55d90b25
relation.isProjectOfPublication01202688-692b-48e9-a127-922d76e66d5c
relation.isProjectOfPublication27ebd69c-df53-46dd-ab91-d1a2ed4c702a
relation.isProjectOfPublication.latestForDiscoveryac4fb709-719a-450b-8c96-17592d46f5e9

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0168192323005580-main.pdf
Size:
4.54 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: