Repository logo
 
Publication

COVID-19 time series prediction

dc.contributor.authorOliveira, Leonardo Sestrem de
dc.contributor.authorGruetzmacher, Sarah
dc.contributor.authorTeixeira, João Paulo
dc.date.accessioned2022-01-17T11:29:45Z
dc.date.available2022-01-17T11:29:45Z
dc.date.issued2021
dc.description.abstractThe Artificial Neural Network (ANN) is a computer technique that uses a mathematical model to represent a simpler form of the biologic neural structure. It is formed by many processing units and its intelligent behavior comes from the iterations between these units. One application of the ANN is for time series prediction algorithms, where the network learns the behavior of time dependent data and it is able to predict future values. In this work, the ANN is applied in predicting the number of COVID-19 confirmed cases and deaths and also the future seven days for the time series of Brazil, Portugal and the United States. From the simulations it is possible to conclude that the prediction of confirmed cases and deaths from COVID-19 have been successfully made by the ANN. Overall, the ANN with a specific test set had a Mean Squared Error (MSE) 50% higher than the ANN with a random test set. The combination of the sigmoidal and linear activation functions and the Levenberg-Marquardt training function had the lowest MSE for all casespt_PT
dc.description.sponsorshipThis work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationOliveira, Leonardo Sestrem de; Gruetzmacher, Sarah Beatriz; Teixeira, João Paulo (2021). COVID-19 time series prediction. In International Conference on ENTERprise Information Systems (CENTERIS), International Conference on Project MANagement (ProjMAN), International Conference on Health and Social Care Information Systems and Technologies (HCist). Procedia Computer Science. ISSN 1877-0509. p. 973-980.pt_PT
dc.identifier.doi10.1016/j.procs.2021.01.254pt_PT
dc.identifier.issn1877-0509
dc.identifier.urihttp://hdl.handle.net/10198/24672
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectBrazil covid 19 predictionpt_PT
dc.subjectCovid 19 predictionpt_PT
dc.subjectPortugal covid 19 predictionpt_PT
dc.subjectTime seriespt_PT
dc.subjectUSA covid 19 predictionpt_PT
dc.titleCOVID-19 time series predictionpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.citation.endPage980pt_PT
oaire.citation.startPage973pt_PT
oaire.citation.titleProcedia Computer Sciencept_PT
oaire.citation.volume181pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameOliveira
person.familyNameGruetzmacher
person.familyNameTeixeira
person.givenNameLeonardo Sestrem de
person.givenNameSarah
person.givenNameJoão Paulo
person.identifier663194
person.identifier.ciencia-id6F18-DAD8-ACDC
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0002-9344-3075
person.identifier.orcid0000-0002-1193-4461
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57216177941
person.identifier.scopus-author-id57069567500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationd39f1e66-56e1-472d-8897-969476357c9b
relation.isAuthorOfPublication38bea487-fafc-4719-be03-783c8b9dae6c
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery38bea487-fafc-4719-be03-783c8b9dae6c
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COVID19_Sarah_Leonardo_Teixeira_Published.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format