Repository logo
 
Publication

NailP at eRisk 2023: search for symptoms of depression

dc.contributor.authorBezerra, Eduardo
dc.contributor.authorSantos, Leonardo Ferreira dos
dc.contributor.authorNascimento, Rodolpho F.
dc.contributor.authorLopes, Rui Pedro
dc.contributor.authorGuedes, Gustavo Paiva
dc.date.accessioned2024-02-01T09:50:07Z
dc.date.available2024-02-01T09:50:07Z
dc.date.issued2023
dc.description.abstractDepression is a global health concern with severe consequences for individuals, making its recognition and understanding crucial. Recently, there has been a growing interest in utilizing social media platforms as valuable sources of information to gain insights into individuals’ experiences with depression. Analyzing textual data from diverse user populations enables the identification of common symptoms, triggers, coping mechanisms, and potential warning signs. Researchers have developed algorithms and machine learning models to automate the detection of depressive symptoms in text, facilitating more efficient screening and early intervention. This paper describes the participation of team NailP in the CLEF eRisk 2023 task 1, which focuses on ranking sentences from user writings based on their relevance to symptoms of depression. The goal is to evaluate the sentences and determine their level of relevance to each symptom outlined in the Beck Depression Questionnaire-II. Such participation contributes to the development of effective methods and tools for identifying and predicting potential risks and dangers associated with depression in online environments.pt_PT
dc.description.sponsorshipThe authors thank CNPq, CAPES, FAPERJ, and CEFET/RJ for partially funding this research. The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBezerra, Eduardo; Santos, Leonardo dos Ferreira; Nascimento, Rodolpho F.; Lopes, Rui Pedro; Guedes, Gustavo Paiva (2023). NailP at eRisk 2023: search for symptoms of depression. In 4th Working Notes of the Conference and Labs of the Evaluation Forum (CLEF-WN). ISSN 1613-0073. 3497, p. 639-661pt_PT
dc.identifier.issn1613-0073
dc.identifier.urihttp://hdl.handle.net/10198/29415
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherCEUR-WSpt_PT
dc.relationLA/P/0007/2021pt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectInformation retrievalpt_PT
dc.subjectEarly detectionpt_PT
dc.subjectDepressionpt_PT
dc.subjectNatural language processingpt_PT
dc.subjectPsycholinguistic patternspt_PT
dc.titleNailP at eRisk 2023: search for symptoms of depressionpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.citation.endPage661pt_PT
oaire.citation.startPage639pt_PT
oaire.citation.title24th Working Notes of the Conference and Labs of the Evaluation Forum (CLEF-WN)pt_PT
oaire.citation.volume3497pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLopes
person.givenNameRui Pedro
person.identifier.ciencia-id8E14-54E4-4DB5
person.identifier.orcid0000-0002-9170-5078
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicatione1e64423-0ec8-46ee-be96-33205c7c98a9
relation.isAuthorOfPublication.latestForDiscoverye1e64423-0ec8-46ee-be96-33205c7c98a9
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication.latestForDiscoveryd0a17270-80a8-4985-9644-a04c2a9f2dff

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
paper-054.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: