Publication
A hyperbolic penalty filter method for semi-infinite programming
dc.contributor.author | Pereira, Ana I. | |
dc.contributor.author | Fernandes, Edite M.G.P. | |
dc.date.accessioned | 2010-01-31T16:54:54Z | |
dc.date.available | 2010-01-31T16:54:54Z | |
dc.date.issued | 2008 | |
dc.description.abstract | This paper presents a new reduction-type method for solving semi-infinite programming problems, where the multi-local optimization is carried out with a sequential simulated annealing algorithm, and the finite reduced problem is solved by a penalty technique based on an hyperbolic function. Global convergence is ensured by a line search filter method. Numerical experiments with a set of known problems show that the algorithm is promising. | pt |
dc.identifier.citation | Pereira, Ana I.; Fernandes, Edite M.G.P. (2008). A hyperbolic penalty filter method for semi-infinite programming. Numerical Analysis and Applied Mathematics: In Numerical Analysis and Applied Mathematics, International Conference 2008. Volume 1048, p. 269-273. | pt |
dc.identifier.issn | 978-0-7354-0705-3 | |
dc.identifier.uri | http://hdl.handle.net/10198/1611 | |
dc.language.iso | eng | pt |
dc.publisher | American Institute of Physics | pt |
dc.subject | Semi-infinite programming | pt |
dc.subject | Reduction method | pt |
dc.subject | Penalty function | pt |
dc.subject | Line search filter method | pt |
dc.title | A hyperbolic penalty filter method for semi-infinite programming | pt |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 273 | pt |
oaire.citation.startPage | 269 | pt |
person.familyName | Pereira | |
person.givenName | Ana I. | |
person.identifier.ciencia-id | 0716-B7C2-93E4 | |
person.identifier.orcid | 0000-0003-3803-2043 | |
person.identifier.rid | F-3168-2010 | |
person.identifier.scopus-author-id | 15071961600 | |
rcaap.rights | openAccess | pt |
rcaap.type | conferenceObject | pt |
relation.isAuthorOfPublication | e9981d62-2a2b-4fef-b75e-c2a14b0e7846 | |
relation.isAuthorOfPublication.latestForDiscovery | e9981d62-2a2b-4fef-b75e-c2a14b0e7846 |