Repository logo
 
Publication

Deep reinforcement learning applied to a robotic pick-and-place application

dc.contributor.authorGomes, Natanael Magno
dc.contributor.authorMartins, Felipe N.
dc.contributor.authorLima, José
dc.contributor.authorWörtche, Heinrich
dc.date.accessioned2022-04-05T14:21:52Z
dc.date.available2022-04-05T14:21:52Z
dc.date.issued2021
dc.description.abstractIndustrial robot manipulators are widely used for repetitive applications that require high precision, like pick-and-place. In many cases, the movements of industrial robot manipulators are hard-coded or manually defined, and need to be adjusted if the objects being manipulated change position. To increase flexibility, an industrial robot should be able to adjust its configuration in order to grasp objects in variable/ unknown positions. This can be achieved by off-the-shelf visionbased solutions, but most require prior knowledge about each object to be manipulated. To address this issue, this work presents a ROS-based deep reinforcement learning solution to robotic grasping for a Collaborative Robot (Cobot) using a depth camera. The solution uses deep Q-learning to process the color and depth images and generate a ϵ- greedy policy used to define the robot action. The Q-values are estimated using Convolutional Neural Network (CNN) based on pre-trained models for feature extraction. Experiments were carried out in a simulated environment to compare the performance of four different pretrained CNN models (RexNext, MobileNet, MNASNet and DenseNet). Results show that the best performance in our application was reached by MobileNet, with an average of 84 % accuracy after training in simulated environment.pt_PT
dc.description.sponsorshipThis work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020 and by the Innovation Cluster Dracten (ICD), project Collaborative Connected Robots (Cobots) 2.0. The authors also thank the support from the Research Centre Biobased Economy from the Hanze University of Applied Sciences.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationGomes, Natanael Magno; Martins, Felipe N.; Lima, José; Wörtche, Heinrich (2021). Deep reinforcement learning applied to a robotic pick-and-place application. In Pereira, Ana I.; Fernandes, Florbela P.; Coelho, João Paulo; Teixeira, João Paulo; Pacheco, Maria F.; Alves, Paulo; Lopes, Rui Pedro (Eds.) Optimization, learning algorithms and applications: first International Conference, OL2A 2021. Cham: Springer Nature. p. 251-265. ISBN 978-3-030-91884-2pt_PT
dc.identifier.doi10.1007/978-3-030-91885-9_18pt_PT
dc.identifier.isbn978-3-030-91884-2
dc.identifier.urihttp://hdl.handle.net/10198/25357
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectCobotspt_PT
dc.subjectReinforcement learningpt_PT
dc.subjectComputer visionpt_PT
dc.subjectPick-and-placept_PT
dc.subjectGraspingpt_PT
dc.titleDeep reinforcement learning applied to a robotic pick-and-place applicationpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.citation.conferencePlaceBragançapt_PT
oaire.citation.endPage265pt_PT
oaire.citation.startPage251pt_PT
oaire.citation.titleOptimization, learning algorithms and applications: first International Conference, OL2A 2021pt_PT
oaire.citation.volume1488pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLima
person.givenNameJosé
person.identifierR-000-8GD
person.identifier.ciencia-id6016-C902-86A9
person.identifier.orcid0000-0001-7902-1207
person.identifier.ridL-3370-2014
person.identifier.scopus-author-id55851941311
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isAuthorOfPublication.latestForDiscoveryd88c2b2a-efc2-48ef-b1fd-1145475e0055
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Deep Reinforcement.pdf
Size:
3.42 MB
Format:
Adobe Portable Document Format