Publication
Simulation and evaluation of deep learning autoencoders for image compression in multi-UAV network systems
| dc.contributor.author | Ramos, Gabryel Silva | |
| dc.contributor.author | Lima, Amaro Azevedo de | |
| dc.contributor.author | Almeida, Luciana F. | |
| dc.contributor.author | Lima, José | |
| dc.contributor.author | Pinto, Milena F. | |
| dc.date.accessioned | 2024-01-30T10:51:38Z | |
| dc.date.available | 2024-01-30T10:51:38Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | Mobile multi-robot systems are versatile alternatives for improving single-robot capacities in many applications, such as logistics, environmental monitoring, search and rescue, photogrammetry, etc. In this sense, this kind of system must have a reliable communication network between the vehicles, ensuring that information exchanged within the nodes has little losses. This work simulates and evaluates the use of autoencoders for image compression in a multi-UAV simulation with ROS and Gazebo for a generic surveillance application. The autoencoder model was developed with the Keras library, presenting good training and validation results, with training and validation accuracy of 70%, and a Peak Signal Noise Ratio (PSNR) of 40dB. The use of the CPU for the simulated UAVs for processing and sending compressed images through the network is 25% faster. The results showed that this compression methodology is a good choice for improving the system’s performance without losing too much information. | pt_PT |
| dc.description.sponsorship | The authors thank CEFET/RJ, UFF, UFRJ, and the Brazilian research agencies CAPES, CNPq, and FAPERJ. Besides, the authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Ramos, Gabryel Silva; Lima, Amaro Azevedo de; Almeida, Luciana F.; Lima, José; Pinto, Milena F. (2023). Simulation and evaluation of deep learning autoencoders for image compression in multi-UAV network systems. In 20th Latin American Robotics Symposium, 15th Brazilian Symposium on Robotics, and 14th Workshop of Robotics in Education (LARS/SBR/WRE). p. 41-46. ISBN 979-8-3503-1538-7 | pt_PT |
| dc.identifier.doi | 10.1109/LARS/SBR/WRE59448.2023.10332986 | pt_PT |
| dc.identifier.isbn | 979-8-3503-1538-7 | |
| dc.identifier.uri | http://hdl.handle.net/10198/29393 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | IEEE | pt_PT |
| dc.relation | LA/P/0007/2021 | pt_PT |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.relation | Research Centre in Digitalization and Intelligent Robotics | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
| dc.subject | Component | pt_PT |
| dc.subject | Formatting | pt_PT |
| dc.subject | Style | pt_PT |
| dc.subject | Styling | pt_PT |
| dc.subject | Insert | pt_PT |
| dc.title | Simulation and evaluation of deep learning autoencoders for image compression in multi-UAV network systems | pt_PT |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardTitle | Research Centre in Digitalization and Intelligent Robotics | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT | |
| oaire.citation.endPage | 46 | pt_PT |
| oaire.citation.startPage | 41 | pt_PT |
| oaire.citation.title | 20th Latin American Robotics Symposium, 15th Brazilian Symposium on Robotics, and 14th Workshop of Robotics in Education (LARS/SBR/WRE) | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| person.familyName | Lima | |
| person.givenName | José | |
| person.identifier | R-000-8GD | |
| person.identifier.ciencia-id | 6016-C902-86A9 | |
| person.identifier.orcid | 0000-0001-7902-1207 | |
| person.identifier.rid | L-3370-2014 | |
| person.identifier.scopus-author-id | 55851941311 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isAuthorOfPublication.latestForDiscovery | d88c2b2a-efc2-48ef-b1fd-1145475e0055 | |
| relation.isProjectOfPublication | 6e01ddc8-6a82-4131-bca6-84789fa234bd | |
| relation.isProjectOfPublication | d0a17270-80a8-4985-9644-a04c2a9f2dff | |
| relation.isProjectOfPublication.latestForDiscovery | d0a17270-80a8-4985-9644-a04c2a9f2dff |
