Repository logo
 
Publication

Training hidden markov models with the taguchi method

dc.contributor.authorCoelho, João Paulo
dc.contributor.authorCunha, José Boaventura
dc.contributor.authorOliveira, Paulo de Moura
dc.date.accessioned2011-05-23T13:49:26Z
dc.date.available2011-05-23T13:49:26Z
dc.date.issued2010
dc.description.abstractIn some control systems structures, like predictive control, mathematical models for the control process must be derived. Those models can be obtained by a broad class of methods like parametric models applied to experimental data. In this context, and for systems with multiple operation regimes, the Hidden Markov model, due to its properties, is a convincing choice. However the parameter estimation of this type of models involves the optimization of a non-convex cost function. So the Baum-Welch method only can find sub-optimal parameters. This article shows that the use of the Taguchi method minimizes the training algorithm sensibility local minima.por
dc.identifier.citationCoelho, João; Cunha, José; Oliveira, Paulo (2010). Training hidden markov models with the taguchi method. In 9th Portuguese Conference on Automatic Control.por
dc.identifier.urihttp://hdl.handle.net/10198/4468
dc.language.isoengpor
dc.peerreviewedyespor
dc.subjectHidden Markov models
dc.subjectTaguchi method
dc.subjectOptimization problems
dc.titleTraining hidden markov models with the taguchi methodpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.titleCONTROLO’2010 – 9th Portuguese Conference on Automatic Controlpor
person.familyNameCoelho
person.givenNameJoão Paulo
person.identifierR-001-EXZ
person.identifier.ciencia-idD61E-A586-7D4A
person.identifier.orcid0000-0002-7616-1383
person.identifier.ridJ-6887-2013
person.identifier.scopus-author-id55137039300
rcaap.rightsrestrictedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication2861f33b-b49a-421d-9bfa-92b4304d2668
relation.isAuthorOfPublication.latestForDiscovery2861f33b-b49a-421d-9bfa-92b4304d2668

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
34_FINAL.PDF
Size:
152 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: