Publication
Mental illness risk prediction in high school students using artificial neural network
datacite.subject.fos | Ciências Médicas::Ciências da Saúde | |
datacite.subject.fos | Ciências Sociais::Psicologia | |
datacite.subject.fos | Ciências Sociais::Ciências da Educação | |
datacite.subject.sdg | 03:Saúde de Qualidade | |
dc.contributor.author | Encarnação, Samuel | |
dc.contributor.author | Vaz, Paula Marisa Fortunato | |
dc.contributor.author | Vaz, Filipe J.A. | |
dc.contributor.author | Fortunato, Álvaro | |
dc.contributor.author | Monteiro, António M. | |
dc.date.accessioned | 2025-09-08T14:07:03Z | |
dc.date.available | 2025-09-08T14:07:03Z | |
dc.date.issued | 2025 | |
dc.description.abstract | The sustainable development goals of the United Nations 2030 agenda, goal number 3 – Good health and well-being- align with student mental health. Objective: To conduct an artificial neural network (ANN) to predict the students' self-reported mental health dimensions. Methods: A cross-sectional and observational study enrolling sociodemographic and health state data from 2050 university students aged (18–30 years). Results: The best algorithm's result was by predicting the students' depressive state with 97 % accuracy (weighted average = [precision = 0.79 %, recall = 0.79 %, F-1 score 0 0.79 %, cross-validation (73 %)]), while dimensions such overall mental health self-perception (validation accuracy = 60 %) and lack of interest in performing their activities of daily living [(ADLs), validation accuracy = 67 %], presented inferior predictions. Conclusions: The ANN best predicted the university students' depressive state (73 %). | eng |
dc.description.sponsorship | We gratefully acknowledge the financial support from The Scientific Board of the University of Porto, Portugal, approved (Identification number: CE18082). We also thank the Public Health Unit of Bragança, a City in the North of Portugal, and the Instituto Politécnico de Bragança (IPB). | |
dc.identifier.citation | Encarnação, Samuel; Vaz, Paula Marisa Fortunato; Vaz, Filipe J.A.; Fortunato, Álvaro; Monteiro, António M. (2025). Mental illness risk prediction in high school students using artificial neural network. Acta Psychologica. ISSN 0001-6918. 259, p. 1-12 | |
dc.identifier.doi | 10.1016/j.actpsy.2025.105324 | |
dc.identifier.issn | 0001-6918 | |
dc.identifier.uri | http://hdl.handle.net/10198/34744 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | Elsevier | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Mental illness | |
dc.subject | Psychological distress | |
dc.subject | Deep learning | |
dc.subject | Quality of life | |
dc.subject | Well-being | |
dc.title | Mental illness risk prediction in high school students using artificial neural network | por |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 12 | |
oaire.citation.startPage | 1 | |
oaire.citation.title | Acta Psychologica | |
oaire.citation.volume | 259 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Encarnação | |
person.familyName | Vaz | |
person.familyName | Monteiro | |
person.givenName | Samuel | |
person.givenName | Paula Marisa Fortunato | |
person.givenName | António M. | |
person.identifier.ciencia-id | 9416-E2F5-E660 | |
person.identifier.ciencia-id | 421B-9F32-65C9 | |
person.identifier.ciencia-id | C41C-6CCD-A1F0 | |
person.identifier.orcid | 0000-0003-2965-2777 | |
person.identifier.orcid | 0000-0001-7678-6781 | |
person.identifier.orcid | 0000-0003-4467-1722 | |
person.identifier.rid | K-6545-2015 | |
person.identifier.scopus-author-id | 57191541426 | |
relation.isAuthorOfPublication | d38d4c9f-84d5-4562-9482-5322ded17d3d | |
relation.isAuthorOfPublication | 7b5564e4-f168-4c90-90f9-7509b8e3e7b8 | |
relation.isAuthorOfPublication | 5b5d8601-e683-42d5-a1b5-c8e29a4e0a41 | |
relation.isAuthorOfPublication.latestForDiscovery | d38d4c9f-84d5-4562-9482-5322ded17d3d |