Repository logo
 
Publication

Mental illness risk prediction in high school students using artificial neural network

datacite.subject.fosCiências Médicas::Ciências da Saúde
datacite.subject.fosCiências Sociais::Psicologia
datacite.subject.fosCiências Sociais::Ciências da Educação
datacite.subject.sdg03:Saúde de Qualidade
dc.contributor.authorEncarnação, Samuel
dc.contributor.authorVaz, Paula Marisa Fortunato
dc.contributor.authorVaz, Filipe J.A.
dc.contributor.authorFortunato, Álvaro
dc.contributor.authorMonteiro, António M.
dc.date.accessioned2025-09-08T14:07:03Z
dc.date.available2025-09-08T14:07:03Z
dc.date.issued2025
dc.description.abstractThe sustainable development goals of the United Nations 2030 agenda, goal number 3 – Good health and well-being- align with student mental health. Objective: To conduct an artificial neural network (ANN) to predict the students' self-reported mental health dimensions. Methods: A cross-sectional and observational study enrolling sociodemographic and health state data from 2050 university students aged (18–30 years). Results: The best algorithm's result was by predicting the students' depressive state with 97 % accuracy (weighted average = [precision = 0.79 %, recall = 0.79 %, F-1 score 0 0.79 %, cross-validation (73 %)]), while dimensions such overall mental health self-perception (validation accuracy = 60 %) and lack of interest in performing their activities of daily living [(ADLs), validation accuracy = 67 %], presented inferior predictions. Conclusions: The ANN best predicted the university students' depressive state (73 %).eng
dc.description.sponsorshipWe gratefully acknowledge the financial support from The Scientific Board of the University of Porto, Portugal, approved (Identification number: CE18082). We also thank the Public Health Unit of Bragança, a City in the North of Portugal, and the Instituto Politécnico de Bragança (IPB).
dc.identifier.citationEncarnação, Samuel; Vaz, Paula Marisa Fortunato; Vaz, Filipe J.A.; Fortunato, Álvaro; Monteiro, António M. (2025). Mental illness risk prediction in high school students using artificial neural network. Acta Psychologica. ISSN 0001-6918. 259, p. 1-12
dc.identifier.doi10.1016/j.actpsy.2025.105324
dc.identifier.issn0001-6918
dc.identifier.urihttp://hdl.handle.net/10198/34744
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectMental illness
dc.subjectPsychological distress
dc.subjectDeep learning
dc.subjectQuality of life
dc.subjectWell-being
dc.titleMental illness risk prediction in high school students using artificial neural networkpor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage12
oaire.citation.startPage1
oaire.citation.titleActa Psychologica
oaire.citation.volume259
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameEncarnação
person.familyNameVaz
person.familyNameMonteiro
person.givenNameSamuel
person.givenNamePaula Marisa Fortunato
person.givenNameAntónio M.
person.identifier.ciencia-id9416-E2F5-E660
person.identifier.ciencia-id421B-9F32-65C9
person.identifier.ciencia-idC41C-6CCD-A1F0
person.identifier.orcid0000-0003-2965-2777
person.identifier.orcid0000-0001-7678-6781
person.identifier.orcid0000-0003-4467-1722
person.identifier.ridK-6545-2015
person.identifier.scopus-author-id57191541426
relation.isAuthorOfPublicationd38d4c9f-84d5-4562-9482-5322ded17d3d
relation.isAuthorOfPublication7b5564e4-f168-4c90-90f9-7509b8e3e7b8
relation.isAuthorOfPublication5b5d8601-e683-42d5-a1b5-c8e29a4e0a41
relation.isAuthorOfPublication.latestForDiscoveryd38d4c9f-84d5-4562-9482-5322ded17d3d

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mental illness risk prediction.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: