Repository logo
 
Publication

Pest Detection in Olive Groves Using YOLOv7 and YOLOv8 Models

dc.contributor.authorAlves, Adília
dc.contributor.authorPereira, J.A.
dc.contributor.authorKhanal, Salik
dc.contributor.authorMorais, A. Jorge
dc.contributor.authorFilipe, Vitor
dc.date.accessioned2024-10-09T09:21:43Z
dc.date.available2024-10-09T09:21:43Z
dc.date.issued2024
dc.description.abstractModern agriculture faces important challenges for feeding a fast-growing planet’s population in a sustainable way. One of the most important challenges faced by agriculture is the increasing destruction caused by pests to important crops. It is very important to control and manage pests in order to reduce the losses they cause. However, pest detection and monitoring are very resources consuming tasks. The recent development of computer vision-based technology has made it possible to automatize pest detection efficiently. In Mediterranean olive groves, the olive fly (Bactrocera oleae Rossi) is considered the key-pest of the crop. This paper presents olive fly detection using the lightweight YOLO-based model for versions 7 and 8, respectively, YOLOv7-tiny and YOLOv8n. The proposed object detection models were trained, validated, and tested using two different image datasets collected in various locations of Portugal and Greece. The images are constituted by sticky yellow trap photos and by McPhail trap photos with olive fly exemplars. The performance of the models was evaluated using precision, recall, and mAP.95. The YOLOV7-tiny model best performance is 88.3% of precision, 85% of Recall, 90% of mAP.50, and 53% of mAP.95. The YOLOV8n model best performance is 85% of precision, 85% of Recall, 90% mAP.50, and 55% of mAP.50 YOLO8n model achieved worst results than YOLOv7-tiny for a dataset without negative images (images without olive fly exemplars). Aiming at installing an experimental prototype in the olive grove, the YOLOv8n model was implemented in a Ubuntu Server 23.04 Raspberry PI 3 microcomputer.pt_PT
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CIMO (UIDB/00690/2020 and UIDP/00690/2020) and SusTEC (LA/P/0007/2020).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationAlves, Adília; Pereira, José; Khanal, Salik; Morais, A. Jorge; Filipe, Vitor (2024). Pest Detection in Olive Groves Using YOLOv7 and YOLOv8 Models. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 2, p. 50–62. ISBN 978-3-031-53035-7pt_PT
dc.identifier.doi10.1007/978-3-031-53036-4_4pt_PT
dc.identifier.isbn978-3-031-53035-7
dc.identifier.isbn978-3-031-53036-4
dc.identifier.urihttp://hdl.handle.net/10198/30394
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationMountain Research Center
dc.relationMountain Research Center
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectOlives sustainable productionpt_PT
dc.subjectConvolutional Neural Networkpt_PT
dc.subjectDeep Learningpt_PT
dc.subjectYOLOv7pt_PT
dc.subjectYOLOv8pt_PT
dc.titlePest Detection in Olive Groves Using YOLOv7 and YOLOv8 Modelspt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleMountain Research Center
oaire.awardTitleMountain Research Center
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00690%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00690%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.citation.endPage62pt_PT
oaire.citation.startPage50pt_PT
oaire.citation.title3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023)pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameAlves
person.familyNamePereira
person.givenNameAdília
person.givenNameJosé Alberto
person.identifier.ciencia-id0019-58CC-96C9
person.identifier.ciencia-id611F-80B2-A7C1
person.identifier.orcid0000-0002-3792-1968
person.identifier.orcid0000-0002-2260-0600
person.identifier.ridL-6798-2014
person.identifier.scopus-author-id57204366348
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationf85c13a5-8370-4647-971d-00b44123739c
relation.isAuthorOfPublication7932162e-a2da-4913-b00d-17babbe51857
relation.isAuthorOfPublication.latestForDiscoveryf85c13a5-8370-4647-971d-00b44123739c
relation.isProjectOfPublication29718e93-4989-42bb-bcbc-4daff3870b25
relation.isProjectOfPublication0aac8939-28c2-46f4-ab6b-439dba7f9942
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublication.latestForDiscovery0aac8939-28c2-46f4-ab6b-439dba7f9942

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Pest Detection in Olive Groves Using YOLOv7.pdf
Size:
3.26 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: