Publication
Pest Detection in Olive Groves Using YOLOv7 and YOLOv8 Models
| dc.contributor.author | Alves, Adília | |
| dc.contributor.author | Pereira, J.A. | |
| dc.contributor.author | Khanal, Salik | |
| dc.contributor.author | Morais, A. Jorge | |
| dc.contributor.author | Filipe, Vitor | |
| dc.date.accessioned | 2024-10-09T09:21:43Z | |
| dc.date.available | 2024-10-09T09:21:43Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Modern agriculture faces important challenges for feeding a fast-growing planet’s population in a sustainable way. One of the most important challenges faced by agriculture is the increasing destruction caused by pests to important crops. It is very important to control and manage pests in order to reduce the losses they cause. However, pest detection and monitoring are very resources consuming tasks. The recent development of computer vision-based technology has made it possible to automatize pest detection efficiently. In Mediterranean olive groves, the olive fly (Bactrocera oleae Rossi) is considered the key-pest of the crop. This paper presents olive fly detection using the lightweight YOLO-based model for versions 7 and 8, respectively, YOLOv7-tiny and YOLOv8n. The proposed object detection models were trained, validated, and tested using two different image datasets collected in various locations of Portugal and Greece. The images are constituted by sticky yellow trap photos and by McPhail trap photos with olive fly exemplars. The performance of the models was evaluated using precision, recall, and mAP.95. The YOLOV7-tiny model best performance is 88.3% of precision, 85% of Recall, 90% of mAP.50, and 53% of mAP.95. The YOLOV8n model best performance is 85% of precision, 85% of Recall, 90% mAP.50, and 55% of mAP.50 YOLO8n model achieved worst results than YOLOv7-tiny for a dataset without negative images (images without olive fly exemplars). Aiming at installing an experimental prototype in the olive grove, the YOLOv8n model was implemented in a Ubuntu Server 23.04 Raspberry PI 3 microcomputer. | pt_PT |
| dc.description.sponsorship | The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CIMO (UIDB/00690/2020 and UIDP/00690/2020) and SusTEC (LA/P/0007/2020). | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Alves, Adília; Pereira, José; Khanal, Salik; Morais, A. Jorge; Filipe, Vitor (2024). Pest Detection in Olive Groves Using YOLOv7 and YOLOv8 Models. In 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023). Cham: Springer Nature, Vol. 2, p. 50–62. ISBN 978-3-031-53035-7 | pt_PT |
| dc.identifier.doi | 10.1007/978-3-031-53036-4_4 | pt_PT |
| dc.identifier.isbn | 978-3-031-53035-7 | |
| dc.identifier.isbn | 978-3-031-53036-4 | |
| dc.identifier.uri | http://hdl.handle.net/10198/30394 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.relation | Mountain Research Center | |
| dc.relation | Mountain Research Center | |
| dc.relation | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
| dc.subject | Olives sustainable production | pt_PT |
| dc.subject | Convolutional Neural Network | pt_PT |
| dc.subject | Deep Learning | pt_PT |
| dc.subject | YOLOv7 | pt_PT |
| dc.subject | YOLOv8 | pt_PT |
| dc.title | Pest Detection in Olive Groves Using YOLOv7 and YOLOv8 Models | pt_PT |
| dc.type | conference paper | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Mountain Research Center | |
| oaire.awardTitle | Mountain Research Center | |
| oaire.awardTitle | Associate Laboratory for Sustainability and Tecnology in Mountain Regions | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00690%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00690%2F2020/PT | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT | |
| oaire.citation.endPage | 62 | pt_PT |
| oaire.citation.startPage | 50 | pt_PT |
| oaire.citation.title | 3rd International Conference on Optimization, Learning Algorithms and Applications (OL2A 2023) | pt_PT |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| oaire.fundingStream | 6817 - DCRRNI ID | |
| person.familyName | Alves | |
| person.familyName | Pereira | |
| person.givenName | Adília | |
| person.givenName | José Alberto | |
| person.identifier.ciencia-id | 0019-58CC-96C9 | |
| person.identifier.ciencia-id | 611F-80B2-A7C1 | |
| person.identifier.orcid | 0000-0002-3792-1968 | |
| person.identifier.orcid | 0000-0002-2260-0600 | |
| person.identifier.rid | L-6798-2014 | |
| person.identifier.scopus-author-id | 57204366348 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.rights | restrictedAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | f85c13a5-8370-4647-971d-00b44123739c | |
| relation.isAuthorOfPublication | 7932162e-a2da-4913-b00d-17babbe51857 | |
| relation.isAuthorOfPublication.latestForDiscovery | f85c13a5-8370-4647-971d-00b44123739c | |
| relation.isProjectOfPublication | 29718e93-4989-42bb-bcbc-4daff3870b25 | |
| relation.isProjectOfPublication | 0aac8939-28c2-46f4-ab6b-439dba7f9942 | |
| relation.isProjectOfPublication | 6255046e-bc79-4b82-8884-8b52074b4384 | |
| relation.isProjectOfPublication.latestForDiscovery | 0aac8939-28c2-46f4-ab6b-439dba7f9942 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Pest Detection in Olive Groves Using YOLOv7.pdf
- Size:
- 3.26 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
