Publication
A comparative study of two optimization clustering techniques on unemployment data
dc.contributor.author | Barros, Elisa | |
dc.contributor.author | Nunes, Alcina | |
dc.contributor.author | Balsa, Carlos | |
dc.date.accessioned | 2014-09-10T14:33:55Z | |
dc.date.available | 2014-09-10T14:33:55Z | |
dc.date.issued | 2013 | |
dc.description.abstract | An important strategy for data classi cation consists in organising data points in clusters. The k-means is a traditional optimisation method applied to cluster data points. Using a labour market database, we suggest the application of an alternative method based on the computation of the dominant eigenvalue of a matrix related with the distance among data points. This approach presents results consistent with the results obtained by the k-means. | por |
dc.identifier.citation | Barros, Elisa; Nunes, Alcina; Balsa, Carlos (2013). A comparative study of two optimization clustering techniques on unemployment data. In XVI Congresso da Associação Portuguesa de Investigação Operacional. Bragança | |
dc.identifier.isbn | 978-972-745-154-8 | |
dc.identifier.uri | http://hdl.handle.net/10198/10382 | |
dc.language.iso | por | por |
dc.peerreviewed | yes | por |
dc.publisher | Instituto Politécnico de Bragança | por |
dc.subject | Clustering methods | por |
dc.subject | K-means | por |
dc.subject | Spectral clustering | por |
dc.subject | Unemployment data mining | por |
dc.title | A comparative study of two optimization clustering techniques on unemployment data | por |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | Bragança | por |
oaire.citation.endPage | 57 | por |
oaire.citation.startPage | 48 | por |
oaire.citation.title | XVI Congresso da Associação Portuguesa de Investigação Operacional | por |
person.familyName | Barros | |
person.familyName | Nunes | |
person.familyName | Balsa | |
person.givenName | Elisa | |
person.givenName | Alcina | |
person.givenName | Carlos | |
person.identifier | 1721518 | |
person.identifier.ciencia-id | 1111-680F-0CAF | |
person.identifier.ciencia-id | DE1E-2F7A-AAB1 | |
person.identifier.orcid | 0000-0001-8515-695X | |
person.identifier.orcid | 0000-0003-4056-9747 | |
person.identifier.orcid | 0000-0003-2431-8665 | |
person.identifier.rid | M-8259-2013 | |
person.identifier.rid | M-8735-2013 | |
person.identifier.scopus-author-id | 55907654000 | |
person.identifier.scopus-author-id | 23391719100 | |
rcaap.rights | openAccess | por |
rcaap.type | conferenceObject | por |
relation.isAuthorOfPublication | 29601d32-5c12-4b5f-84ec-55d83617d04e | |
relation.isAuthorOfPublication | f96c3560-c1d3-432c-aa84-49982ea86106 | |
relation.isAuthorOfPublication | d0e5ccff-9696-4f4f-9567-8d698a6bf17d | |
relation.isAuthorOfPublication.latestForDiscovery | 29601d32-5c12-4b5f-84ec-55d83617d04e |