Repository logo
 
Publication

Intelligent System for Miscalibration Detection and Quality Prediction in Automotive Assembly Line

datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
datacite.subject.fosEngenharia e Tecnologia::Engenharia Mecânica
datacite.subject.sdg04:Educação de Qualidade
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.advisorLeitão, Paulo
dc.contributor.advisorBarbosa, José
dc.contributor.advisorBorges, André Pinz
dc.contributor.authorGonçalves, Waldyr Turquetti
dc.date.accessioned2025-10-16T08:15:51Z
dc.date.available2025-10-16T08:15:51Z
dc.date.issued2025
dc.description.abstractThis work applies data analysis techniques, Machine Learning and Optimization Algorithms to develop two data analysis systems in the OpenZDM project for the assembly measuring stations in the workshop of an automotive plant. These systems were designed to generate insights into the production line, helping the industry to achieve Zero Defect Manufacturing (ZDM) goals. The case study chapter presents the context for understanding the characteristics of the case study. The following chapters detail the tools created to implement the ZDM strategies. The first is the system for identifying the miscalibration of measuring stations, consisting of a microservice that provides alerts informing whether or not the stations are miscalibrated. The second system is the diagnostic system, made up of four microservices. Within the functionalities of this system, there is the functionality responsible for making quality predictions and the other for improving the hyperparameters of the prediction model. The tests carried out demonstrated theneffectiveness of the systems in dealing with the large volume of data and creating useful insights for the production line. In addition, the cases of miscalibration detection and the prediction process have been validated, affirming the usefulness of the services within the automotive factory’s production line.por
dc.description.abstractEste trabalho aplica técnicas de análise de dados, Aprendizado de Máquina e Algoritmos de Otimização para desenvolver dois sistemas de análise de dados no projeto OpenZDM para as estações de medição de montagem da oficina de uma fábrica automotiva. Esses sistemas foram projetados para gerar insights sobre a linha de produção, ajudando a indústria a atingir as metas de Manufatura com Defeito Zero (ZDM). O capítulo do caso de estudo apresenta o contexto para a compreensão das características do estudo do caso. Os capítulos seguintes detalham as ferramentas criadas para implementar as estratégias do ZDM. O primeiro abordado é o sistema para identificação da descalibração das estações de medição, composto por um microsserviço, que fornece alertas que informam se as estações estão descalibradas ou não. O segundo sistema é o sistema de diagnóstico, composto por quarto microsserviços, dentro das funcionalidades desse sistema existe a funcionalidade responsável por fazer a predição de qualidade e o outro por aprimorar os hiperparâmetros do modelo de predição. Os testes realizados demonstraram a eficácia dos sistemas em lidar com o grande volume de dados e criar insights úteis para a linha de produção. Além disso é feita validações dos casos de detecção de descalibração e do processo de predição, afirmando a utilidade dos serviços dentro da linha de produção da fabrica automotiva.por
dc.description.sponsorshipThis work was partially supported by the openZDM project under the HORIZON-CL4-2021-TWIN-TRANSITION01 call, Grant Agreement No. 101058673. It was also supported by national funds through FCT/MCTES (PIDDAC): CeDRI, UIDB/05757/2020 (DOI:10.54499/UIDB/05757/2020)and UIDP/05757/2020 (DOI:10.54499/UIDP/05757/2020); and SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020). I would like to express my sincere gratitude to Prof. José Carlos Rufino, Prof. Rui Pedro Lopes, and the team at the Polytechnic Institute of Bragança (IPB) for their support in setting up the development environment, enabling the replication of shop-floor production machine functionalities, and for designing the microservice-based infrastructure. I also thank the openZDM team, especially the members from the vehicular sector, for sharing practical knowledge and valuable insights related to shop-floor operations. Furthermore, I would like to thank Prof. Paulo Leitão, Prof. Andre Pinz Borges, Prof. Rui Tadashi, and PhD student Victória Melo, whose guidance and teachings were fundamental to the development of this work.
dc.identifier.tid204017700
dc.identifier.urihttp://hdl.handle.net/10198/34842
dc.language.isoeng
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subjectZDM
dc.subjectReal-time monitoring
dc.subjectRegression models
dc.subjectOptimization algorithms
dc.titleIntelligent System for Miscalibration Detection and Quality Prediction in Automotive Assembly Linepor
dc.typemaster thesis
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleAssociate Laboratory for Sustainability and Tecnology in Mountain Regions
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0007%2F2020/PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication6255046e-bc79-4b82-8884-8b52074b4384
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd
thesis.degree.nameInformática

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Waldyr Turquetti Gonçalves.pdf
Size:
6.94 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: