Repository logo
 
No Thumbnail Available
Publication

Detecção de landmarks e classificação de subespécies de abelhas através de asas com deep learning

Use this identifier to reference this record.
Name:Description:Size:Format: 
Gomes_Walter.pdf5.97 MBAdobe PDF Download

Abstract(s)

Com intuito de auxiliar no manutenção de colmeias na apicultura, esse projeto tem como objetivo o desenvolvimento de um classificador automático de subespécies de abelhas. Para isso foi desenvolvido um programa que utiliza das landmarks adaptadas de Nawrocka[ 1] para classificação, porém para realizar o processo de forma automática, foi necessário implementar um detector de objetos capaz de encontrar asas de abelha em uma imagem e um detector de landmarks capaz de indentificá-las em uma imagem e então proceder para classificação. O detector de objetos foi capaz de detectar 98% das asas e o detector de landmarks obteve foi capaz de detectar todos os landmarks em 91% dos casos, com uma precisão de 94% de semelhança com landmarks marcados a mão. A classificação por sua vez, apresentou bons resultados com as maiores classes dos datasets(em quantidade de elementos), tendo 92% de precisão com as duas maiores classes e 87% de precisão com as três maiores.
The aim of this project is to help bee hive maintenance in beekeeping to develop an automatic bee subspecies classifier. For this, a program was developed that uses the landmarks adapted from Nawrocka [1] for classification, but to perform the process automatically, it was necessary to implement an object detector capable of finding bee wings in an image and a detector of landmarks able to identify them in an image and then proceed to classification. The object detector was able to detect 98 % of the wings and the landmarks detector obtained was able to detect all landmarks in 91 % of cases, with a precision of 94 % resemblance to hand-marked landmarks. The classification, in turn, presented good results with the largest classes of datasets, with 92 % accuracy with the two largest classes and 87 % accuracy with the three largest.

Description

Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do Paraná

Keywords

Visão computacional Detecção de landmarks Detector de objetos Deep learning

Pedagogical Context

Citation

Research Projects

Organizational Units

Journal Issue