Logo do repositório
 
Publicação

Prediction models for short-term load and production forecasting in smart electrical grids

dc.contributor.authorFerreira, Adriano
dc.contributor.authorLeitão, Paulo
dc.contributor.authorBarata, José
dc.date.accessioned2018-03-20T11:40:54Z
dc.date.available2018-03-20T11:40:54Z
dc.date.issued2017
dc.description.abstractThe scheduling of household smart load devices play a key role in microgrid ecosystems, and particularly in underpowered grids. The management and sustainability of these microgrids could bene t from the application of short-term prediction for the energy production and demand, which have been successfully applied and matured in larger scale systems, namely national power grids. However, the dynamic change of energy demand, due to the necessary adjustments aiming to render the microgrid self-sustainability, makes the forecasting process harder. This paper analyses some prediction techniques to be embedded in intelligent and distributed agents responsible to manage electrical microgrids, and especially increase their self-sustainability. These prediction techniques are implemented in R language and compared according to di erent prediction and historical data horizons. The experimental results shows that none is the optimal solution for all criteria, but allow to identify the best prediction techniques for each scenario and time scope.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFerreira, Adriano; Leitão, Paulo; Barata, José (2017). Prediction models for short-term load and production forecasting in smart electrical grids. In 8th International Conference on Industrial Applications of Holonic and Multi-Agent Systems, HoloMAS 2017. Lyon. [S.l.]: Springer, p. 186-199. ISBN 978-331964634-3pt_PT
dc.identifier.doi10.1007/978-3-319-64635-0_14pt_PT
dc.identifier.isbn978-331964634-3
dc.identifier.urihttp://hdl.handle.net/10198/16415
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMulti-agent systemspt_PT
dc.subjectPrediction modelspt_PT
dc.subjectMicrogrids sustainabilitypt_PT
dc.titlePrediction models for short-term load and production forecasting in smart electrical gridspt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.endPage199pt_PT
oaire.citation.startPage186pt_PT
oaire.citation.title8th International Conference on Industrial Applications of Holonic and Multi-Agent Systems, HoloMAS 2017pt_PT
oaire.citation.volume10444pt_PT
person.familyNameFerreira
person.familyNameLeitão
person.givenNameAdriano
person.givenNamePaulo
person.identifierA-8390-2011
person.identifier.ciencia-id671B-E042-481D
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.orcid0000-0002-3680-1171
person.identifier.orcid0000-0002-2151-7944
person.identifier.scopus-author-id7402999589
person.identifier.scopus-author-id35584388900
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication8ec73a6b-248e-4072-9766-fc7992cfc2d5
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication.latestForDiscovery68d9eb25-ad4f-439b-aeb2-35e8708644cc

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
prediction-models-short (1).pdf
Tamanho:
1.5 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descrição: