Repository logo
 
Publication

Titanium based dry electrodes for biostimulation and data acquisition

dc.contributor.authorConselheiro, Raul
dc.contributor.authorLopes, Claudia
dc.contributor.authorAzevedo, Nelson
dc.contributor.authorLeitao, Paulo
dc.contributor.authorAgulhari, Cristiano
dc.contributor.authorVeloso, H.
dc.contributor.authorVaz, F.
dc.contributor.authorGonçalves, João Lucas
dc.contributor.authorFranco, Tiago
dc.contributor.authorOliveira, Leonardo Sestrem de
dc.date.accessioned2023-03-14T16:09:41Z
dc.date.available2023-03-14T16:09:41Z
dc.date.issued2023
dc.description.abstractWet electrodes rely on conductive electrolyte gel for proper perfor- mance, usually presenting high setup time and being disposable or requiring time-consuming cleaning methods. Skin irritation and signal quality deterioration are some of the problems that may occur with these electrodes. Therefore, to overcome these drawbacks, 3D printed bases using Fused Deposition Modelling (FDM) with Polylactic acid (PLA), Polyurethane (PU) and Cellulose filaments were functionalized with titanium (Ti) and titanium-nitride (TiN) thin films and dopped with copper (Cu). The electrodes, implemented using different diameters, were used to record electromyography (EMG) signals proceeded by biostimula- tion sessions to access their electrical and mechanical characteristics and com- pare them to that of commercial AgCl/Ag electrodes. The results show that TiN and TiNCu0.45 dry electrodes present results similar to wet AgCl/Ag electrodes for data acquisition. To be comparable to usual carbon electrodes for muscle stimulation, they need some conductivity improvements to lower the necessary voltage. Besides, the endurance of the thin films must be enhanced as well as the adhesion to the polymer.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationConselheiro, Raul; Lopes, C.; Azevedo, Nelson; Leitao, Paulo; Agulhari, Cristiano; Veloso, H.; Vaz, F.; Gonçalves, João Lucas; Franco, Tiago; Sestrem de Oliveira, Leonardo (2023). Titanium based dry electrodes for biostimulation and data acquisition. In 19th International Symposium on Distributed Computing and Artificial Intelligence. L'Aquila, Italy. 583, p. 111-120pt_PT
dc.identifier.doi10.1007/978-3-031-20859-1_12pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/27719
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectDry electrodespt_PT
dc.subjectSignal acquisitionpt_PT
dc.subjectBiostimulationpt_PT
dc.subjectsEMGpt_PT
dc.subjectThin filmpt_PT
dc.titleTitanium based dry electrodes for biostimulation and data acquisitionpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.citation.conferencePlaceL'Aquila, Italypt_PT
oaire.citation.endPage120pt_PT
oaire.citation.startPage111pt_PT
oaire.citation.title19th International Symposium on Distributed Computing and Artificial Intelligencept_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLeitão
person.familyNameFranco
person.familyNameOliveira
person.givenNamePaulo
person.givenNameTiago
person.givenNameLeonardo Sestrem de
person.identifierA-8390-2011
person.identifierUAMm8moAAAAJ&hl
person.identifier.ciencia-id8316-8F13-DA71
person.identifier.ciencia-id7F19-C649-5DD9
person.identifier.ciencia-id6F18-DAD8-ACDC
person.identifier.orcid0000-0002-2151-7944
person.identifier.orcid0000-0001-8574-4380
person.identifier.orcid0000-0002-9344-3075
person.identifier.scopus-author-id35584388900
person.identifier.scopus-author-id57223608236
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication68d9eb25-ad4f-439b-aeb2-35e8708644cc
relation.isAuthorOfPublication77169a8f-77ce-4994-8310-3e3710e07520
relation.isAuthorOfPublicationd39f1e66-56e1-472d-8897-969476357c9b
relation.isAuthorOfPublication.latestForDiscovery77169a8f-77ce-4994-8310-3e3710e07520
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DCAI_RaulKaizer.pdf
Size:
469.85 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: