Repository logo
 
Publication

Object detection and localization: an application inspired by RobotAtFactory using machine learning

datacite.subject.fosEngenharia e Tecnologia::Outras Engenharias e Tecnologiaspt_PT
dc.contributor.advisorLima, José
dc.contributor.advisorNakano, Alberto Yoshihiro
dc.contributor.advisorBraun, João
dc.contributor.authorPilarski, Leonardo
dc.date.accessioned2023-05-19T13:26:09Z
dc.date.available2023-05-19T13:26:09Z
dc.date.issued2023
dc.descriptionMestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do Paranápt_PT
dc.description.abstractThe evolution of artificial intelligence and digital cameras has made the transformation of the real world into its digital image version more accessible and widely used. In this way, the analysis of information can be carried out with the use of algorithms. The detection and localization of objects is a crucial task in several applications, such as surveillance, autonomous robotics, intelligent transportation systems, and others. Based on this, this work aims to implement a system that can find objects and estimate their location (distance and angle), through the acquisition and analysis of images. Having as motivation the possible problems that can be introduced in the robotics competition, RobotAtFactory Lite, in future versions. As an example, the obstruction of the path developed through the printed lines, requiring the robot to deviate, and/or the positioning of the boxes in different places of the initial warehouses, being positioned so that the robot does not know its previous location, having to find it somehow. For this, different methods were analyzed, based on machine leraning, for object detection using feature extraction and neural networks, as well as object localization, based on the Pinhole model and triangulation. By compiling these techniques through python programming in the module, based on a Raspberry Pi Model B and a Raspi Cam Rev 1.3, the goal of the work is achieved. Thus, it was possible to find the objects and obtain an estimate of their relative position. In the future, in a possible implementation together with a robot, this data can be used to find objects and perform tasks.pt_PT
dc.description.abstractA evolução da inteligência artificial e das câmeras digitais, tornou mais acessível e amplamente utilizada a transformação do mundo real, para sua versão em imagem digital. Dessa maneira, a análise das informações pode ser efetuada com a utilização de algoritmos. A deteção e localização de objetos é uma tarefa crucial em diversas aplicações, tais como vigilância, robótica autônoma, sistemas de transporte inteligente, entre outras. Baseado nisso, este trabalho tem como objetivo implementar um sistema que consiga encontrar objetos e estimar sua localização (distância e ângulo), através da aquisição e análise de imagens. Tendo como motivação os possíveis problemas que possam ser introduzidos na competição de robótica, Robot@Factory Lite, em versões futuras. Podendo ser citados como exemplo a obstrução do caminho desenvolvido através das linhas impressas, requerendo que o robô desvie, e/ou o posicionamento das caixas em locais diferentes dos armazéns iniciais, sendo posicionadas de modo que o robô não saiba sua localização prévia, devendo encontra-las de alguma maneira. Para isso, foram analisados diferentes métodos, baseadas em machine leraning, para deteção de objetos utilizando extração de características e redes neurais, bem como a localização de objetos, baseada no modelo de Pinhole e triangulação. Compilando essas técnicas através da programação em python, no módulo, baseado em um Raspberry Pi Model B e um Raspi Cam Rev 1.3, o objetivo do trabalho é alcançado. Assim, foi possível encontrar os objetos e obter uma estimativa da sua posição relativa. Futuramente, em uma possível implementação junta a um robô, esses dados podem ser utilizados para encontrar objetos e executar tarefas.pt_PT
dc.identifier.tid203299620pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/28329
dc.language.isoengpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/pt_PT
dc.subjectMachine learningpt_PT
dc.subjectNeural networkspt_PT
dc.subjectObject detectionpt_PT
dc.subjectLocalizationpt_PT
dc.subjectRobotics competitionpt_PT
dc.titleObject detection and localization: an application inspired by RobotAtFactory using machine learningpt_PT
dc.typemaster thesis
dspace.entity.typePublication
rcaap.rightsopenAccesspt_PT
rcaap.typemasterThesispt_PT
thesis.degree.nameEngenharia Industrialpt_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Leonardo Pilarski.pdf
Size:
12.9 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: