Repository logo
 
Publication

Hindcasting with cluster-based analogues

dc.contributor.authorBalsa, Carlos
dc.contributor.authorRodrigues, Carlos Veiga
dc.contributor.authorAraújo, Leonardo Oliveira
dc.contributor.authorRufino, José
dc.date.accessioned2022-01-13T15:07:16Z
dc.date.available2022-01-13T15:07:16Z
dc.date.issued2021
dc.description.abstractThe reconstruction of meteorological observations or deterministic predictions for a certain variable and station may be performed with data from other variables at that station, or from other nearby stations. This is a hindcasting problem, known from some time to be solvable using the Analogues Ensemble (AnEn) method. However, depending on the dimension and granularity of the datasets used for the reconstruction, this method may be computationally very demanding, even if parallelization is used. In this paper, the AnEn method is combined with K-means clustering, allowing for a considerable acceleration of the reconstruction task, while keeping the accuracy of the results.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBalsa, Carlos; Rodrigues, C. Veiga; Araújo, Leonardo; Rufino, José (2021). Hindcasting with cluster-based analogues. In First International Conference, ARTIIS 2021. p. 346-360. ISBN 978-3-030-90240-7pt_PT
dc.identifier.doi10.1007/978-3-030-90241-4_27pt_PT
dc.identifier.isbn978-3-030-90240-7
dc.identifier.urihttp://hdl.handle.net/10198/24630
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectHindcastingpt_PT
dc.subjectAnalogues ensemblept_PT
dc.subjectK-meanspt_PT
dc.subjectTime seriespt_PT
dc.titleHindcasting with cluster-based analoguespt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.endPage360pt_PT
oaire.citation.startPage346pt_PT
oaire.citation.volume1485pt_PT
person.familyNameBalsa
person.familyNameRufino
person.givenNameCarlos
person.givenNameJosé
person.identifier1721518
person.identifier.ciencia-idDE1E-2F7A-AAB1
person.identifier.ciencia-idC414-F47F-6323
person.identifier.orcid0000-0003-2431-8665
person.identifier.orcid0000-0002-1344-8264
person.identifier.ridM-8735-2013
person.identifier.scopus-author-id23391719100
person.identifier.scopus-author-id55947199100
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationd0e5ccff-9696-4f4f-9567-8d698a6bf17d
relation.isAuthorOfPublication1e24d2ce-a354-442a-bef8-eebadd94b385
relation.isAuthorOfPublication.latestForDiscovery1e24d2ce-a354-442a-bef8-eebadd94b385

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2021_Book_AdvancedResearchInTechnologies_AnEn.pdf
Size:
2.13 MB
Format:
Adobe Portable Document Format