Repository logo
 
Publication

Analysis of the critical temperature on load bearing LSF walls under fire

dc.contributor.authorPiloto, P.A.G.
dc.contributor.authorKhetata, Mohamed S.
dc.contributor.authorRamos-Gavilán, Ana B.
dc.date.accessioned2023-03-07T10:15:59Z
dc.date.available2023-03-07T10:15:59Z
dc.date.issued2022
dc.description.abstractLight Steel Frame (LSF) walls are widely used in building structures, used as partition walls and load bearing walls. The LSF is usually protected by layers of homogeneous plates or composite plates, with or without insulation materials in the cavity. This investigation presents the simulation results of composite LSF walls in reduced scale and full scale, based on variable load levels (20 to 80%). The numerical model uses a hybrid model approximation, based on the experimental tests to accurately determine the temperature field. The numerical model is validated with experimental results, at reduced and full scale, both at room temperature and under fire conditions. This modelling technique can follow the thermal and mechanical degradation of the protection layers of the LSF wall and determine the fire rating for load bearing (R) and insulation (I). The fire resistance (R) decreases with the increase of the load level. The insulation ability is also predicted for different protection materials. Relevant conclusions are presented to increase the insulation ability of LSF walls, especially when using non combustible double protection layers. The insulation ability to sustain fire usually increases with the number of studs and with the application of insulation material in the cavity region. The ability to sustain the load under fire also increases with the number of studs, especially for higher load levels. The ability to sustain the load also increases with the number of protection layers, changing from 16% at 20% load level, to 42% at 50% load level. A new proposal is presented for the critical temperature of the LSF, based on the maximum temperature of the LSF during the fire, allowing the calculation of the critical temperature, based on the load level of the specimen. This relation can predict the fire resistance time, based on the preliminary thermal analysis of the specimen. The reduced scale specimens present higher critical temperatures when compared to the full scale specimens, due to the typical failure mode (local modes for the reduced scale and global modes for the large scale).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationPiloto, P.A.G.; Khetata, Mohamed S.; Ramos-Gavilán, Ana B. (2022). Analysis of the critical temperature on load bearing LSF walls under fire. Engineering Structures.pt_PT
dc.identifier.doi10.1016/j.engstruct.2022.114858pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/27504
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectLSF wallspt_PT
dc.subjectFire resistancept_PT
dc.subjectNumerical validationpt_PT
dc.subjectStandard fire testspt_PT
dc.titleAnalysis of the critical temperature on load bearing LSF walls under firept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.startPage114858pt_PT
oaire.citation.titleEngineering Structurespt_PT
oaire.citation.volume270pt_PT
person.familyNamePiloto
person.givenNamePaulo A.G.
person.identifier.ciencia-id0519-449D-6F13
person.identifier.orcid0000-0003-2834-0501
person.identifier.ridB-4866-2008
person.identifier.scopus-author-id6506406159
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationbaaee084-ab97-4c95-b636-24ab6bab0e3e
relation.isAuthorOfPublication.latestForDiscoverybaaee084-ab97-4c95-b636-24ab6bab0e3e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
REF_298.pdf
Size:
12.09 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: