Repository logo
 
Publication

Solanum lycopersicum - Fusarium oxysporum Fo47 interaction study using ml classifiers in transcriptomic data

dc.contributor.authorRodrigues, Vânia
dc.contributor.authorDeusdado, Sérgio
dc.contributor.authorRodrigues, Vânia
dc.date.accessioned2023-03-14T16:22:55Z
dc.date.available2023-03-14T16:22:55Z
dc.date.issued2022
dc.description.abstractFusarium oxysporum Fo47 is a pervasive endophyte that can colonize plant roots, initiating an interaction that can provide phytosanitary defenses. The response triggered by this non-pathogenic fungus is not well understood. To elucidate the Solanum lycopersicum - Fusarium oxysporum Fo47 interaction, machine learning methods were used to identify the informative genes (IGs) using publicly available transcriptomic data. The assembled dataset revealed 244 significantly differentially expressed genes (DEGs). The experimental work with machine learning classifiers achieved significant identification of these DEGs. Multilayer Perceptron (MLP) classifiers and Kernel Logistic Regression metalearners (meta-KLR) parameterization was optimized, achieving MLP-b and meta-KLR-b near optimal performance. Afterwards, these classifiers were used as attribute evaluators identifying two sets (A,B) of highest-rated genes, 393 (set A) by MLP-b and 317 (set B) by meta-KLR-b. Regarding the percent of significantly differentially expressed genes found by the classifiers compared to the total 244 DEGs, the set A presented 92.2%, while the set B presented 84.8%. Considering B⊂A, the IGs identified by MLP-b (set A) were used in the subsequent analysis. Among this 393 IGs, 379 were identified as Solanum lycopersicum genes, 1 as Escherichia coli protein (Hygromycin-B 4-O-kinase), 1 as Saccharomyces cerevisiae protein (galactose-responsive transcription factor GAL4) and 12 were unidentified. Then, a functional enrichment analysis of the Solanum lycopersicum IGs showed 283 biological processes and 20 biological pathways involved in the Solanum lycopersicum - Fo47 interaction.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRodrigues, Vânia; Deusdado, Sérgio (2022). Solanum lycopersicum - Fusarium oxysporum Fo47 interaction study using ml classifiers in transcriptomic data. In Pereira, Ana I.; Andrej, Košir; Fernandes, Florbela P.; Pacheco, Maria F.; Teixeira, João Paulo; Lopes, Rui Pedro (Eds.) Optimization, Learning Algorithms and Applications: Second International Conference, OL2A 2022. Cham: Springer Nature. p. 405-418. ISBN 978-3-031-23235-0pt_PT
dc.identifier.doi10.1007/978-3-031-23236-7_28pt_PT
dc.identifier.isbn978-3-031-23236-7
dc.identifier.urihttp://hdl.handle.net/10198/27720
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMachine learningpt_PT
dc.subjectMicroarraypt_PT
dc.subjectInformative genespt_PT
dc.subjectSolanum lycopersicumpt_PT
dc.titleSolanum lycopersicum - Fusarium oxysporum Fo47 interaction study using ml classifiers in transcriptomic datapt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.endPage418pt_PT
oaire.citation.startPage405pt_PT
oaire.citation.titleOptimization, Learning Algorithms and Applications: Second International Conference, OL2A 2022pt_PT
oaire.citation.volume1754pt_PT
person.familyNameDeusdado
person.familyNameRodrigues
person.givenNameSérgio
person.givenNameVânia
person.identifier.ciencia-id1D14-2CBC-54F2
person.identifier.ciencia-id6B14-50D7-7EBC
person.identifier.orcid0000-0003-2638-2230
person.identifier.orcid0000-0003-2044-4277
person.identifier.scopus-author-id15764598600
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication1363c41f-0861-40ea-a87a-4a24d9658f03
relation.isAuthorOfPublicationa89e7a00-32c9-4207-a839-c736e6b00952
relation.isAuthorOfPublication.latestForDiscovery1363c41f-0861-40ea-a87a-4a24d9658f03

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Artigo1_OL2A_2022.pdf
Size:
18.42 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: