Repository logo
 
Publication

Stator winding fault detection using external search coil and artificial neural network

dc.contributor.authorVicente, João
dc.contributor.authorFerreira, Ângela P.
dc.contributor.authorCastoldi, Marcelo
dc.contributor.authorTeixeira, João Paulo
dc.contributor.authorGoedtel, Alessandro
dc.date.accessioned2022-01-12T15:41:01Z
dc.date.available2022-01-12T15:41:01Z
dc.date.issued2020
dc.description.abstractThis paper presents a methodology for winding stator fault detection of induction motors, using an external search coil, which is a noninvasive technique and can be applied during motor operation. The dispersion magnetic flux of the motor operating in abnormal conditions induces a voltage in the search coil that differs from a reference pattern corresponding to the healthy stator winding. Experimental data were obtained in a test bench using a 0.75 kW three-phase squirrel-cage induction motor with the stator winding modified to allow the introduction of short circuits. This work considered short circuits in one phase, involving 1%, 3%, 5% and 10% of the turns, with the motor loaded with a varying torque. Fault diagnosis is obtained through two models of artificial neural networks, implemented with the signals in the time domain. The obtained results demonstrated that the developed methodology presents difficulties in predicting short circuits in incipient stages, but for short circuits of higher severity, the behaviour improved substantially, being 100% successful for faults with 10% turns short-circuited.pt_PT
dc.description.sponsorshipThis work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationVicente, João: Ferreira, Ângela P.; Castoldi, Marcelo; Teixeira, João Paulo; Goedtel, Alessandro (2020). Stator winding fault detection using external search coil and artificial neural network. In 9th Scientific-Technical Conference on E-mobility, Sustainable Materials and Technologies (MATBUD). Cracow. p. 1-9. ISBN 978-2-7598-9108-5pt_PT
dc.identifier.doi10.1051/matecconf/202032201054pt_PT
dc.identifier.isbn978-2-7598-9108-5
dc.identifier.urihttp://hdl.handle.net/10198/24592
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectInductionpt_PT
dc.subjectMotor diagnosispt_PT
dc.titleStator winding fault detection using external search coil and artificial neural networkpt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.citation.startPage01054pt_PT
oaire.citation.titleMATEC Web of Conferencespt_PT
oaire.citation.volume322pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameFerreira
person.familyNameTeixeira
person.givenNameÂngela P.
person.givenNameJoão Paulo
person.identifier663194
person.identifier.ciencia-id2211-6787-D936
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0002-1912-2556
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridM-8188-2013
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id55516840300
person.identifier.scopus-author-id57069567500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication3fec941d-79fb-4901-918d-a34ffa0195cc
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscovery3fec941d-79fb-4901-918d-a34ffa0195cc
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stator winding.pdf
Size:
266.94 KB
Format:
Adobe Portable Document Format