Publication
Can physical fitness predict loneliness risk in physically trained older people? A machine learning algorithm's applicability and reliability to working in an extremely small dataset.
dc.contributor.author | Encarnação, Samuel Gonçalves | |
dc.contributor.author | Vaz, Paula Marisa Fortunato | |
dc.contributor.author | Forte, Pedro | |
dc.contributor.author | Santos, Patrick | |
dc.contributor.author | Braz, Rui Costa | |
dc.contributor.author | Vaz, Cátia | |
dc.contributor.author | Teixeira, José Eduardo | |
dc.contributor.author | Monteiro, A.M. | |
dc.date.accessioned | 2024-01-03T12:13:30Z | |
dc.date.available | 2024-01-03T12:13:30Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Older adult's loneliness is an increasingly prevalent social problem. Exercise adaptations could be protective for brain function and loneliness prevention. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Encarnação, Samuel Gonçalve; Vaz, P. M.; Fortunato, A.; Forte, P. M.; Santos, P.; Braz, R.C.; Vaz, C.; Teixeira, J.E.; Monteiro, A.M. (2023). Can physical fitness predict loneliness risk in physically trained older people? A machine learning algorithm's applicability and reliability to working in an extremely small dataset. [Comunicação em Poster]. CIDESD International Congress 2023. Vila Real: Universidade de Trás-os-Montes e Alto Douro | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10198/29059 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Exercise | pt_PT |
dc.subject | loneliness | pt_PT |
dc.subject | Older adult's | pt_PT |
dc.subject | Prevention | pt_PT |
dc.subject | Research Subject Categories::MEDICINE | pt_PT |
dc.subject | Research Subject Categories::SOCIAL SCIENCES::Social sciences::Psychology | pt_PT |
dc.title | Can physical fitness predict loneliness risk in physically trained older people? A machine learning algorithm's applicability and reliability to working in an extremely small dataset. | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | Universidade de Trás-os-Montes e Alto Douro | pt_PT |
oaire.citation.title | CIDESD International Congress 2023 | pt_PT |
person.familyName | Vaz | |
person.familyName | Forte | |
person.familyName | Vaz | |
person.familyName | Teixeira | |
person.familyName | Monteiro | |
person.givenName | Paula Marisa Fortunato | |
person.givenName | Pedro | |
person.givenName | Cátia | |
person.givenName | José Eduardo | |
person.givenName | António M. | |
person.identifier.ciencia-id | 421B-9F32-65C9 | |
person.identifier.ciencia-id | 351B-B16B-79C7 | |
person.identifier.ciencia-id | DD1D-0F6A-74D8 | |
person.identifier.ciencia-id | D11C-9591-7A8A | |
person.identifier.ciencia-id | C41C-6CCD-A1F0 | |
person.identifier.orcid | 0000-0001-7678-6781 | |
person.identifier.orcid | 0000-0003-0184-6780 | |
person.identifier.orcid | 0000-0001-5771-7510 | |
person.identifier.orcid | 0000-0003-4612-3623 | |
person.identifier.orcid | 0000-0003-4467-1722 | |
person.identifier.rid | K-6545-2015 | |
person.identifier.scopus-author-id | 57191541426 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 7b5564e4-f168-4c90-90f9-7509b8e3e7b8 | |
relation.isAuthorOfPublication | 3ecc6d1b-07a4-40d7-81f4-df6fd7b3d5b0 | |
relation.isAuthorOfPublication | 5fa170a3-f347-4923-9a08-a3adafa5a0b2 | |
relation.isAuthorOfPublication | 79042f92-ce53-4b79-a33f-76ac63c55b8d | |
relation.isAuthorOfPublication | 5b5d8601-e683-42d5-a1b5-c8e29a4e0a41 | |
relation.isAuthorOfPublication.latestForDiscovery | 5b5d8601-e683-42d5-a1b5-c8e29a4e0a41 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 51 2023 Can Physical Fitness Predict Loneliness Risk.jpg
- Size:
- 691.83 KB
- Format:
- Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.75 KB
- Format:
- Item-specific license agreed upon to submission
- Description: