Repository logo
 
Publication

PCAnEn - hindcasting with analogue ensembles of principal components

dc.contributor.authorBalsa, Carlos
dc.contributor.authorBreve, Murilo Montanini
dc.contributor.authorAndré, Baptiste
dc.contributor.authorRodrigues, Carlos Veiga
dc.contributor.authorRufino, José
dc.date.accessioned2024-02-20T15:07:06Z
dc.date.available2024-02-20T15:07:06Z
dc.date.issued2023
dc.description.abstractThe focus of this study is the reconstruction of missing meteorological data at a station based on data from neighboring stations. To that end, the Principal Components Analysis (PCA) method was applied to the Analogue Ensemble (AnEn) method to reduce the data dimensionality. The proposed technique is greatly influenced by the choice of stations according to proximity and correlation to the predicted one. PCA associated with AnEn decreased the errors in the prediction of some meteorological variables by 30% and, at the same time, decreased the prediction time by 48%. It was also verified that our implementation of this methodology in MATLAB is around two times faster than in R.pt_PT
dc.description.sponsorshipThe authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBalsa, Carlos; Breve, Murilo Montanini; André, Baptiste; Rodrigues, Carlos Veiga; Rufino, José (2023). PCAnEn - hindcasting with analogue ensembles of principal components. In International Conference on Computer Science, Electronics, and Industrial Engineering (CSEI) 2022. ISSN 2367-3370. 678, p. 169-183pt_PT
dc.identifier.doi10.1007/978-3-031-30592-4_13pt_PT
dc.identifier.eissn2367-3389
dc.identifier.issn2367-3370
dc.identifier.urihttp://hdl.handle.net/10198/29571
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationLA/P/0007/2021pt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectHindcastingpt_PT
dc.subjectAnalogue ensemblespt_PT
dc.subjectPrincipal component analysispt_PT
dc.subjectTime seriespt_PT
dc.subjectRpt_PT
dc.subjectMATLABpt_PT
dc.titlePCAnEn - hindcasting with analogue ensembles of principal componentspt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05757%2F2020/PT
oaire.citation.endPage183pt_PT
oaire.citation.startPage169pt_PT
oaire.citation.titleInternational Conference on Computer Science, Electronics, and Industrial Engineering (CSEI) 2022pt_PT
oaire.citation.volume678pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameBalsa
person.familyNameRufino
person.givenNameCarlos
person.givenNameJosé
person.identifier1721518
person.identifier.ciencia-idDE1E-2F7A-AAB1
person.identifier.ciencia-idC414-F47F-6323
person.identifier.orcid0000-0003-2431-8665
person.identifier.orcid0000-0002-1344-8264
person.identifier.ridM-8735-2013
person.identifier.scopus-author-id23391719100
person.identifier.scopus-author-id55947199100
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationd0e5ccff-9696-4f4f-9567-8d698a6bf17d
relation.isAuthorOfPublication1e24d2ce-a354-442a-bef8-eebadd94b385
relation.isAuthorOfPublication.latestForDiscoveryd0e5ccff-9696-4f4f-9567-8d698a6bf17d
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublicationd0a17270-80a8-4985-9644-a04c2a9f2dff
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Artigo_PCAnEn_CSEI22.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: