Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.03 MB | Adobe PDF |
Advisor(s)
Abstract(s)
A água residual da indústria extratora de óleo de bagaço de azeitona (IEOBA) é considerada como uma das mais tóxicas e complexas de se tratar. Entre as principais características de referir, a alta concentração de matéria orgânica não biodegradável e compostos fenólicos (CFen) que são inibidores de atividade microbiana, impossibilitando tratamento biológico sem a sua prévia remoção. Para superar as complexidades, técnicas de tratamento eficientes de remoção de CFen e matéria orgânica pouco biodegradáveis devem ser desenvolvidas. Os Processo Oxidativos Avançados (POA) são métodos de tratamento que estão sendo amplamente estudados para degradar matéria orgânica através do uso de agentes oxidantes, corrente elétrica e/ou catalisadores. A peroxi-eletrooxidação (PEO) é um dos métodos da POA que combina o radical hidroxila fornecido pelo peróxido de hidrogênio como agente oxidante, a corrente elétrica e a eletrogeração aniônica de coagulante com potencial de remoção de matéria orgânica pouco biodegradável. Os eletrodos aniônicos de alumínio e ferro em conjunto com o cátodo de grafite foram estudados para a remoção de CFen e Carência Química de Oxigênio (CQO). Ao aplicar PEO na água residual da IEOBA, através da metodologia de superfície de resposta (RSM) e o desenho experimental de Box-Behnken Design (BBD) avaliando a concentração de peróxido de hidrogênio [H2O2], densidade de corrente e tempo de reação com pH 3, comparando o sistema de alumínio grafite com o sistema ferro grafite, obteve- se a remoção de 89% e 88% de CFen além de 30% e 29% de CQO respectivamente, como maiores remoções atingidas pelos limites estudados. A concentração de peróxido de hidrogênio é o fator que mais influência na remoção de CFen acontecendo no início da reação. Já para a remoção de CQO, a eficiência de remoção está ligada ao tempo de reação e a densidade de corrente. Na configuração de peroxi-eletrooxidação em estudo, o peróxido de hidrogênio foi consumido logo no início (em até 15 minutos) e após o consumo, prevaleceu reações de eletrocoagulação com o ânodo de sacrifício eletrogerando coagulante. A peroxi-eletrooxidação demonstrou potencial para a remoção de CFen em pouco tempo de reação, porém a remoção de CQO não foi eficiente nas mesmas condições.
The wastewater of the olive pomace oil extracting industry (IEOBA) was considered one of the most toxic and complex to treat. Among the main characteristics are the high concentration of non-biodegradable organic matter and phenolic compounds (CFen) that are inhibitors of microbial activity, making biological treatment impossible without its previous removal. To overcome the complexities, efficient treatment techniques should be developed to remove CFen and unbiodegradable organic matter. The advanced oxidation process (AOP) is a treatment method that is being widely studied to degrade organic matter through the use of oxidizing agents, electric current and/or catalysts. Peroxi-electrooxidation (PEO) is one of the methods of AOP that combining hydroxyl radical provided by hydrogen peroxide as an oxidizing agent, electric current and anionic coagulant electrogeneration. The aluminum and iron anionic electrodes together with the graphite cathode electrode were studied for the removal of CFen and COD. By applying PEO to IEOBA residual water, through the response surface methodology (RSM) and the experimental design of Box-Behnken Design (BBD) evaluating the concentration of hydrogen peroxide [H2O2], current density and reaction time with pH 3, comparing the graphite aluminum system with the graphite iron system, the removal of 89% and 88% of CFen in addition to 30% and 29% of COD, respectively, is obtained, as higher removals reached by the studied limits. [H2O2] is the main factor influencing CFen removal happening at the beginning of the reaction. For COD removal, removal efficiency was linked to the reaction time and the current density. In the peroxy-electrooxidation configuration under study, hydrogen peroxide was consumed early on (within 15 minutes) and after the hydrogen peroxide consumption, the electrocoagulation reactions were prevailed with the coagulating electrogenerating sacrificial anode. Peroxy- electrooxidation demonstrated potential for CFen removal in a short reaction time, but COD removal was not efficient under the same conditions.
The wastewater of the olive pomace oil extracting industry (IEOBA) was considered one of the most toxic and complex to treat. Among the main characteristics are the high concentration of non-biodegradable organic matter and phenolic compounds (CFen) that are inhibitors of microbial activity, making biological treatment impossible without its previous removal. To overcome the complexities, efficient treatment techniques should be developed to remove CFen and unbiodegradable organic matter. The advanced oxidation process (AOP) is a treatment method that is being widely studied to degrade organic matter through the use of oxidizing agents, electric current and/or catalysts. Peroxi-electrooxidation (PEO) is one of the methods of AOP that combining hydroxyl radical provided by hydrogen peroxide as an oxidizing agent, electric current and anionic coagulant electrogeneration. The aluminum and iron anionic electrodes together with the graphite cathode electrode were studied for the removal of CFen and COD. By applying PEO to IEOBA residual water, through the response surface methodology (RSM) and the experimental design of Box-Behnken Design (BBD) evaluating the concentration of hydrogen peroxide [H2O2], current density and reaction time with pH 3, comparing the graphite aluminum system with the graphite iron system, the removal of 89% and 88% of CFen in addition to 30% and 29% of COD, respectively, is obtained, as higher removals reached by the studied limits. [H2O2] is the main factor influencing CFen removal happening at the beginning of the reaction. For COD removal, removal efficiency was linked to the reaction time and the current density. In the peroxy-electrooxidation configuration under study, hydrogen peroxide was consumed early on (within 15 minutes) and after the hydrogen peroxide consumption, the electrocoagulation reactions were prevailed with the coagulating electrogenerating sacrificial anode. Peroxy- electrooxidation demonstrated potential for CFen removal in a short reaction time, but COD removal was not efficient under the same conditions.
Description
Keywords
Eletrocoagulação Oxidação avançada Peroxi-eletrooxidação POA RSM-BBD