Repository logo
 
Publication

DeepWings©: automatic wing geometric morphometrics classification of honey bee (Apis mellifera) subspecies using deep learning for detecting landmarks

dc.contributor.authorRodrigues, Pedro João
dc.contributor.authorGomes, Walter Betini Sandim
dc.contributor.authorPinto, M. Alice
dc.date.accessioned2023-01-13T10:25:41Z
dc.date.available2023-01-13T10:25:41Z
dc.date.issued2022
dc.description.abstractHoney bee classification by wing geometric morphometrics entails the first step of manual annotation of 19 landmarks in the forewing vein junctions. This is a time-consuming and error- prone endeavor, with implications for classification accuracy. Herein, we developed a software called DeepWings © that overcomes this constraint in wing geometric morphometrics classification by automatically detecting the 19 landmarks on digital images of the right forewing. We used a database containing 7634 forewing images, including 1864 analyzed by F. Ruttner in the original delineation of 26 honey bee subspecies, to tune a convolutional neural network as a wing detector, a deep learning U-Net as a landmarks segmenter, and a support vector machine as a subspecies classifier. The implemented MobileNet wing detector was able to achieve a mAP of 0.975 and the landmarks segmenter was able to detect the 19 landmarks with 91.8% accuracy, with an average positional precision of 0.943 resemblance to manually annotated landmarks. The subspecies classifier, in turn, presented an average accuracy of 86.6% for 26 subspecies and 95.8% for a subset of five important subspecies. The final implementation of the system showed good speed performance, requiring only 14 s to process 10 images. DeepWings © is very user-friendly and is the first fully automated software, offered as a free Web service, for honey bee classification from wing geometric morphometrics. DeepWings© can be used for honey bee breeding, conservation, and even scientific purposes as it provides the coordinates of the landmarks in excel format, facilitating the work of research teams using classical identification approaches and alternative analytical tools.pt_PT
dc.description.sponsorshipFinancial support was provided through the program COMPETE 2020—POCI (Programa Operacional para a Competividade e Internacionalização) and by Portuguese funds through FCT (Fundação para a Ciência e a Tecnologia) in the framework of the project BeeHappy (POCI-01- 0145-FEDER-029871). FCT provided financial support by national funds (FCT/MCTES) to CIMO (UIDB/00690/2020).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRodrigues, Pedro João; Gomes, Walter; Pinto, M. Alice (2022). DeepWings©: automatic wing geometric morphometrics classification of honey bee (Apis mellifera) subspecies using deep learning for detecting landmarks. Big Data and Cognitive Computing. eISSN 2504-2289. 6:3, p. 1-20pt_PT
dc.identifier.doi10.3390/bdcc6030070pt_PT
dc.identifier.eissn2504-2289
dc.identifier.urihttp://hdl.handle.net/10198/26488
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationMountain Research Center
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectWing landmarkspt_PT
dc.subjectDeep learningpt_PT
dc.subjectWing geometric morphometricspt_PT
dc.subjectHoney bee classificationpt_PT
dc.subjectSoftwarept_PT
dc.titleDeepWings©: automatic wing geometric morphometrics classification of honey bee (Apis mellifera) subspecies using deep learning for detecting landmarkspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleMountain Research Center
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00690%2F2020/PT
oaire.citation.issue3pt_PT
oaire.citation.titleBig Data and Cognitive Computingpt_PT
oaire.citation.volume6pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameRodrigues
person.familyNamePinto
person.givenNamePedro João
person.givenNameM. Alice
person.identifier.ciencia-id1316-21BB-9015
person.identifier.ciencia-idF814-A1D0-8318
person.identifier.orcid0000-0002-0555-2029
person.identifier.orcid0000-0001-9663-8399
person.identifier.scopus-author-id8085507800
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication6c5911a6-b62b-4876-9def-60096b52383a
relation.isAuthorOfPublication0667fe04-7078-483d-9198-56d167b19bc5
relation.isAuthorOfPublication.latestForDiscovery6c5911a6-b62b-4876-9def-60096b52383a
relation.isProjectOfPublication29718e93-4989-42bb-bcbc-4daff3870b25
relation.isProjectOfPublication.latestForDiscovery29718e93-4989-42bb-bcbc-4daff3870b25

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
BDCC-06-00070.pdf
Size:
6.71 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: