Repository logo
 
Publication

Atrial fibrillation classification based on MLP networks by extracting Jitter and Shimmer parameters

dc.contributor.authorBorghi, Pedro Henrique
dc.contributor.authorBorges, Renata Coelho
dc.contributor.authorTeixeira, João Paulo
dc.date.accessioned2022-01-17T12:03:55Z
dc.date.available2022-01-17T12:03:55Z
dc.date.issued2021
dc.description.abstractAtrial fibrillation (AF) is the most common cardiac anomaly and one that potentially threatens human life. Due to its relation to a variation in cardiac rhythm during indeterminate periods, long-term observations are necessary for its diagnosis. With the increase in data volume, fatigue and the complexity of long-term features make analysis an increasingly impractical process. Most medical diagnostic aid systems based on machine learning, are designed to automatically detect, classify or predict certain behaviors. In this work, using the PhysioNet MIT-BIH Atrial Fibrillation database, a system based on MLP artificial neural network is proposed to differentiate, between AF and non-AF, segments and ECG’s features, obtaining average accuracy of 80.67% in test set, for the 10-fold cross-validation method. As a highlight, the extraction of jitter and shimmer parameters from ECG windows is presented to compose the network input sets, indicating a slight improvement in the model's performance. Added to these, Shannon's and logarithmic energy entropies are determined, also indicating an improvement in performance related to the use of fewer features.pt_PT
dc.description.sponsorshipThis work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBorghi, Pedro Henrique; Borges, Renata Coelho; Teixeira, João Paulo (2021). Atrial fibrillation classification based on MLP networks by extracting Jitter and Shimmer parameters. In International Conference on ENTERprise Information Systems (CENTERIS), International Conference on Project MANagement (ProjMAN), International Conference on Health and Social Care Information Systems and Technologies (HCist). Procedia Computer Science. ISSN 1877-0509. p. 931-939pt_PT
dc.identifier.doi10.1016/j.procs.2021.01.249pt_PT
dc.identifier.issn1877-0509
dc.identifier.urihttp://hdl.handle.net/10198/24678
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationResearch Centre in Digitalization and Intelligent Robotics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAtrial fibrillationpt_PT
dc.subjectLogarithm energypt_PT
dc.subjectShannon entropypt_PT
dc.subjectJitter of ECGpt_PT
dc.subjectShimmer of ECGpt_PT
dc.titleAtrial fibrillation classification based on MLP networks by extracting Jitter and Shimmer parameterspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleResearch Centre in Digitalization and Intelligent Robotics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05757%2F2020/PT
oaire.citation.endPage939pt_PT
oaire.citation.startPage931pt_PT
oaire.citation.titleProcedia Computer Sciencept_PT
oaire.citation.volume181pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameBorghi
person.familyNameTeixeira
person.givenNamePedro Henrique
person.givenNameJoão
person.identifier663194
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0003-4356-3674
person.identifier.orcid0000-0002-6679-5702
person.identifier.ridN-6576-2013
person.identifier.scopus-author-id57069567500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationccb6b7ae-67f8-4d07-8af1-34a9cdcd3bbd
relation.isAuthorOfPublication33f4af65-7ddf-46f0-8b44-a7470a8ba2bf
relation.isAuthorOfPublication.latestForDiscoveryccb6b7ae-67f8-4d07-8af1-34a9cdcd3bbd
relation.isProjectOfPublication6e01ddc8-6a82-4131-bca6-84789fa234bd
relation.isProjectOfPublication.latestForDiscovery6e01ddc8-6a82-4131-bca6-84789fa234bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
procedia hcist BorghiBorgesTeixeira_Published.pdf
Size:
534.31 KB
Format:
Adobe Portable Document Format