Repository logo
 
Publication

Deterministic Classifiers Accuracy Optimization for Cancer Microarray Data

dc.contributor.authorRodrigues, Vânia
dc.contributor.authorDeusdado, Sérgio
dc.contributor.authorRodrigues, Vânia
dc.date.accessioned2020-03-05T15:16:53Z
dc.date.available2020-03-05T15:16:53Z
dc.date.issued2019
dc.description.abstractThe objective of this study was to improve classification accuracy in cancer microarray gene expression data using a collection of machine learning algorithms available in WEKA. State of the art deterministic classification methods, such as: Kernel Logistic Regression, Support Vector Machine, Stochastic Gradient Descent and Logistic Model Trees were applied on publicly available cancer microarray datasets aiming to discover regularities that provide insights to help characterization and diagnosis correctness on each cancer typology. The implemented models, relying on 10-fold cross-validation, parameterized to enhance accuracy, reached accuracy above 90%. Moreover, although the variety of methodologies, no significant statistic differences were registered between them, at significance level 0.05, confirming that all the selected methods are effective for this type of analysis.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRodrigues Vânia; Deusdado Sérgio (2020) Deterministic Classifiers Accuracy Optimization for Cancer Microarray Data. In F. Fdez-Riverola; M. Rocha; Mohamad M.S.; Zaki N.; Castellanos-Garzón J. (Eds) 13th International Conference on Practical Applications of Computational Biology and Bioinformatics. Cham: Springer International. p. 154-163. ISBN 978-3-030-23872-8pt_PT
dc.identifier.doi10.1007/978-3-030-23873-5_19pt_PT
dc.identifier.isbn978-3-030-23872-8
dc.identifier.urihttp://hdl.handle.net/10198/20833
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Naturept_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMachine Learningpt_PT
dc.subjectDataminingpt_PT
dc.subjectDeterministic Classifierspt_PT
dc.subjectBioinformaticspt_PT
dc.subjectCancer gene expressionpt_PT
dc.titleDeterministic Classifiers Accuracy Optimization for Cancer Microarray Datapt_PT
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferencePlaceChampt_PT
oaire.citation.endPage163pt_PT
oaire.citation.startPage154pt_PT
oaire.citation.title13th International Conference on Practical Applications of Computational Biology and Bioinformaticspt_PT
oaire.citation.volume1005pt_PT
person.familyNameDeusdado
person.familyNameRodrigues
person.givenNameSérgio
person.givenNameVânia
person.identifier.ciencia-id1D14-2CBC-54F2
person.identifier.ciencia-id6B14-50D7-7EBC
person.identifier.orcid0000-0003-2638-2230
person.identifier.orcid0000-0003-2044-4277
person.identifier.scopus-author-id15764598600
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication1363c41f-0861-40ea-a87a-4a24d9658f03
relation.isAuthorOfPublicationa89e7a00-32c9-4207-a839-c736e6b00952
relation.isAuthorOfPublication.latestForDiscovery1363c41f-0861-40ea-a87a-4a24d9658f03

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deterministic classifiers accuracy optimization for cancer microarray data.pdf
Size:
370.78 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Item-specific license agreed upon to submission
Description: