Logo do repositório
 
Publicação

Deep learning applied to the classification of skin lesions

datacite.subject.fosEngenharia e Tecnologia::Outras Engenharias e Tecnologiaspt_PT
dc.contributor.advisorMonteiro, Fernando C.
dc.contributor.advisorLazzaretti, André E.
dc.contributor.authorSilva, Giuliana Martins
dc.date.accessioned2024-01-03T14:24:16Z
dc.date.available2024-01-03T14:24:16Z
dc.date.issued2023
dc.descriptionMestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do Paranápt_PT
dc.description.abstractSkin cancer has been a global health issue and its diagnosis is a challenge in the medical field. Among all the types of skin cancer, melanoma is the worst and can be lethal if not early treated. The use of deep learning techniques, specifically, convolutional neural networks can help to improve the accuracy and speed up the classification of skin lesions. In this work, we aim to employ different image preprocessing techniques, various convolutional neural network models, data augmentation, and ensemble techniques to compare their results and provide an analysis of the data obtained. To achieve that, it was performed several experiments combining different image preprocessing techniques, which, paired with data augmentation strategies, aim to enhance the accuracy and reliability of the classification models. Additionally, three ensemble methods were tested to improve the classification systems’ robustness and reliability by gathering the strengths of each model. Our best result was the ensemble of EfficientNet-B2, EfficientNet-B5, and ResNeSt101 models with the application of data augmentation, and the combination of color constancy and hair removal techniques. This combined approach achieved a balanced accuracy of0.8132. By offering insights into the challenges faced, methodologies employed, and results obtained, this story aims to serve as a guide for researchers and practitioners aiming to advance the field of skin lesion classification using deep learning. Keywords: Deep Learning; Skin Lesion Classification; Image preprocessing.pt_PT
dc.description.abstractO câncer de pele é um problema de saúde global e seu diagnóstico é um desafio na área médica. Entre todos os tipos de câncer de pele, o melanoma é o pior e pode ser letal se não tratado precocemente. O uso de técnicas de deep learning, especificamente, redes neurais convolucionais, pode ajudar a melhorar a precisão e acelerar a classificação de lesões de pele. Neste trabalho, buscamos empregar diferentes técnicas de pré-processamento de imagens, vários modelos de redes neurais convolucionais, data augmentation e técnicas de ensemble para comparar seus resultados e fornecer uma análise dos dados obtidos. Para isso, foram realizados vários experimentos combinando diferentes técnicas de préprocessamento de imagens, que, combinadas com estratégias de data augmentation, visam melhorar a precisão e confiabilidade dos modelos de classificação. Além disso, três métodos de ensemble foram testados para melhorar a robustez e confiabilidade dos sistemas de classificação, reunindo os pontos fortes de cada modelo. Nosso melhor resultado foi o ensemble dos modelos EfficientNet-B2, EfficientNet-B5 e ResNeSt101 com a aplicação de data augmentation e a combinação de técnicas de color constancy e remoção de pelos. Esta abordagem alcançou uma balanced accuracy de 0,8132. Ao oferecer insights sobre as metodologias empregadas e resultados obtidos, este estudo visa servir como um guia para pesquisadores e profissionais que buscam avançar no campo da classificação de lesões cutâneas usando aprendizado profundo.pt_PT
dc.identifier.tid203444558pt_PT
dc.identifier.urihttp://hdl.handle.net/10198/29071
dc.language.isoengpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/pt_PT
dc.subjectDeep learningpt_PT
dc.subjectSkin lesion classificationpt_PT
dc.subjectImage preprocessingpt_PT
dc.titleDeep learning applied to the classification of skin lesionspt_PT
dc.typemaster thesis
dspace.entity.typePublication
rcaap.rightsopenAccesspt_PT
rcaap.typemasterThesispt_PT
thesis.degree.nameInformáticapt_PT

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
Giuliana Silva.pdf
Tamanho:
424.29 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descrição: